×

Actions of algebraic groups on the spectrum of rational ideals. II. (English) Zbl 0914.16013

[For part I cf. ibid. 182, No. 2, 383-400 (1996; Zbl 0867.16020).]
The author studies rational actions of a linear algebraic group \(G\) on an algebra \(V\), and the induced actions on \(\text{Rat}(V)\), the spectrum of rational ideals of \(V\) (a subset of \(\text{Spec}(V)\) which often includes all primitive ideals). This work extends results of Moeglin and Rentschler to prime characteristic, often also relaxing their finiteness assumptions on \(V\). In particular, some properties of the rational ideal \(J\) are related with its orb, the ideal \((J:G)=\bigcap_{\gamma\in G}\gamma(J)\). The rational ideals of \(V\) containing the orb of \(J\) are precisely those in the Zariski-closure \(X\) of the orbit of \(J\) in \(\text{Rat}(V)\). The \(G\)-stratum of \(J\) consists of all rational ideals in \(X\) whose orbit is dense in \(X\) (i.e. whose orb is equal to the orb of \(J\)). The author shows that the \(G\)-spectrum of a rational ideal consists of exactly one \(G\)-orbit, and that rational ideals are maximal in their strata in a strong sense. These results are useful for studying prime and primitive spectra of certain algebras, cf. recent work by K. R. Goodearl and E. S. Letzter [Trans. Am. Math. Soc. (to appear)]. It is shown further that the orbit of \(J\) is open in its closure in \(\text{Rat}(V)\), provided that \(J\) is locally closed. Among other results, the author proves that the semiprime ideal \((J:G)\) is Goldie, and relates the uniform and Gelfand-Kirillov dimensions of \(V/J\) and \(V/(J,G)\).
Reviewer: Li Fang (Hangzhou)

MSC:

16W20 Automorphisms and endomorphisms
14L30 Group actions on varieties or schemes (quotients)
17B35 Universal enveloping (super)algebras
16P60 Chain conditions on annihilators and summands: Goldie-type conditions
16D25 Ideals in associative algebras

Citations:

Zbl 0867.16020
Full Text: DOI

References:

[1] Abe, E.; Kanno, T., Some remarks on algebraic groups, Tôhoku Math. J. (2), 11, 376-384 (1959) · Zbl 0115.02604
[2] Atiyah, M. F.; Macdonald, I. G., Introduction to Commutative Algebra (1969), Addison-Wesley: Addison-Wesley Reading · Zbl 0175.03601
[3] Bell, A. D., Goldie dimensions of prime factors of polynomial and skew-polynomial rings, J. London Math. Soc. (2), 29, 418-424 (1984) · Zbl 0522.16004
[4] Borel, A., Linear Algebraic Groups (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0726.20030
[5] Borho, W.; Gabriel, P.; Rentschler, R., Primideale in Einhüllenden auflösbarer Lie-Algebren. Primideale in Einhüllenden auflösbarer Lie-Algebren, Lecture Notes in Mathematics, 357 (1973), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0293.17005
[6] Borho, W.; Kraft, H., Über die Gelfand-Kirillov-Dimension, Math. Ann., 220, 1-24 (1976) · Zbl 0306.17005
[7] Chin, W., Actions of solvable algebraic groups on noncommutative rings, Azumaya Algebras, Actions, and Modules, Proceedings of a Conference in Honor of Goro Azumaya’s Seventieth Birthday. Azumaya Algebras, Actions, and Modules, Proceedings of a Conference in Honor of Goro Azumaya’s Seventieth Birthday, Contemp. Math., 124 (1992), Birkhäuser: Birkhäuser Basel, p. 29-38 · Zbl 0759.16012
[8] Cohn, P. M., Algebra (1989), Wiley: Wiley Chichester · Zbl 0703.00002
[9] Cohn, P. M., Algebra (1991), Wiley: Wiley Chichester · Zbl 0719.00002
[10] Dixmier, J., Enveloping Algebras (1996), Amer. Math. Soc: Amer. Math. Soc Providence · Zbl 0867.17001
[11] Farkas, D. R., Groups acting on affine algebras, Trans. Amer. Math. Soc., 310, 485-497 (1988) · Zbl 0706.13006
[12] Ferrero, M., Prime and principal closed ideals in polynomial rings, J. Algebra, 134, 45-59 (1990) · Zbl 0702.16002
[13] Ferrero, M.; Parmenter, M. M., A note on Jacobson rings and polynomial rings, Proc. Amer. Math. Soc., 105, 281-286 (1989) · Zbl 0672.16004
[14] K. R. Goodearl, E. S. Letzter, The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras, Trans. Amer. Math. Soc.; K. R. Goodearl, E. S. Letzter, The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras, Trans. Amer. Math. Soc. · Zbl 0978.16040
[15] Hodges, T. J.; Levasseur, T.; Toro, M., Algebraic structure of multi-parameter quantum groups, Adv. in Math., 126, 52-92 (1997) · Zbl 0878.17009
[16] Joseph, A., Idéaux premiers et primitifs de l’algèbre des fonctions sur un groupe quantique, C. R. Acad. Sci. Paris Sér. I Math., 316, 1139-1142 (1993) · Zbl 0784.17021
[17] Joseph, A., On the prime and primitive spectra of the algebra of functions on a quantum group, J. Algebra, 169, 441-511 (1994) · Zbl 0814.17013
[18] Joseph, A., Quantum Groups and Their Primitive Ideals. Quantum Groups and Their Primitive Ideals, Ergeb. Math. Grenzgeb. (3), 29 (1995), Springer-Verlag: Springer-Verlag Berlin · Zbl 0808.17004
[19] Krause, G. R.; Lenagan, T. H., Growth of Algebras and Gelfand-Kirillov Dimension (1985), Pitman: Pitman Boston · Zbl 0564.16001
[20] Lanski, C., Goldie conditions in finite normalizing extensions, Proc. Amer. Math. Soc., 79, 515-519 (1980) · Zbl 0438.16010
[21] McConnell, J. C.; Robson, J. C., Noncommutative Noetherian Rings (1987), Wiley: Wiley Chichester · Zbl 0644.16008
[22] Moeglin, C.; Rentschler, R., Orbites d’un groupe algébrique dans l’espace des idéaux rationnels d’une algèbre enveloppante, Bull. Soc. Math. France, 109, 403-426 (1981) · Zbl 0495.17006
[23] Moeglin, C.; Rentschler, R., Sur la classification des idéaux primitifs des algèbres enveloppantes, Bull. Soc. Math. France, 112, 3-40 (1984) · Zbl 0549.17007
[24] Moeglin, C.; Rentschler, R., Sous-corps commutatifs ad-stables des anneaux de fractions des quotients des algèbres enveloppantes; espaces homogènes et induction de Mackey, J. Funct. Anal., 69, 307-396 (1986) · Zbl 0618.17007
[25] C. Moeglin, R. Rentschler, Idéaux G-rationnels, rang de Goldie, 1986; C. Moeglin, R. Rentschler, Idéaux G-rationnels, rang de Goldie, 1986
[26] Montgomery, S., Hopf Algebras and Their Actions on Rings. Hopf Algebras and Their Actions on Rings, CBMS Regional Conference Series in Mathematics, 82 (1993), American Mathematical Society: American Mathematical Society Providence · Zbl 0793.16029
[27] Passman, D. S., Infinite Crossed Products (1989), Academic Press: Academic Press Boston · Zbl 0519.16010
[28] Rentschler, R., Primitive ideals in enveloping algebras (general case), (Small, L. W., Noetherian Rings and Their Applications. Noetherian Rings and Their Applications, Math. Surveys and Monographs, 24 (1987), Amer. Math. Soc: Amer. Math. Soc Providence), 37-57 · Zbl 0651.17005
[29] Robson, J. C.; Small, L. W., Liberal extensions, Proc. London Math. Soc., 42, 87-103 (1981) · Zbl 0473.16019
[30] Rosenlicht, M., Automorphisms of function fields, Trans. Amer. Math. Soc., 79, 1-11 (1955) · Zbl 0065.02501
[31] Rowen, L. H., Polynomial Identities in Ring Theory (1980), Academic Press: Academic Press New York · Zbl 0461.16001
[32] Vonessen, N., Actions of algebraic groups on the spectrum of rational ideals, J. Algebra, 182, 383-400 (1996) · Zbl 0867.16020
[33] Vonessen, N., Actions of linearly reductive groups on affine PI-algebras, Mem. Amer. Math. Soc., 414 (1989) · Zbl 0691.16025
[34] Waterhouse, W. C., Introduction to Affine Group Schemes. Introduction to Affine Group Schemes, Graduate Texts in Mathematics, 66 (1979), Springer-Verlag: Springer-Verlag New York · Zbl 0442.14017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.