×

An improved Störmer-Verlet method based on exact discretization for nonlinear oscillators. (English) Zbl 1474.65226

Summary: Motivated by the advantage of exact discretization of a linear differential equation and the importance of symplectic numerical methods for conservative nonlinear oscillators, a modified Störmer-Verlet method relying on a parameter \(\omega\) is proposed. The main idea is: firstly, based on some analytical approximation strategies, relating a linear equation with the corresponding nonlinear equation such that linear equation’s frequency approximates the exact frequency of the nonlinear equation; secondly, forcing the modified Störmer-Verlet method to solve the related linear equation exactly. The convergence, symplectic and symmetric properties of the new method are analyzed. For numerical implementation, the cubic Duffing equation and the simple pendulum are solved by the new method with some approximate frequencies as the parameter \(\omega \), respectively. Numerical results show that the new method is much more accurate than its classical partner.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L11 Numerical solution of singularly perturbed problems involving ordinary differential equations
70H05 Hamilton’s equations
70H12 Periodic and almost periodic solutions for problems in Hamiltonian and Lagrangian mechanics
Full Text: DOI

References:

[1] An introduction for scientists and engineers · Zbl 0417.34002
[2] Pure and Applied Mathematics · Zbl 0418.70001
[3] He, J., Preliminary report on the energy balance for nonlinear oscillations, Mech. Res. Commun., 29, 2-3, 107-111 (2002) · Zbl 1048.70011
[4] Yazdi, M. K.; Tehrani, P. H., The energy balance to nonlinear oscillations via Jacobi collocation method, Alexandria Eng. J., 54, 2, 99-103 (2015)
[5] Anjum, N.; He, J., Laplace transform: making the variational iteration method easier, Appl. Math. Lett., 92, 134-138 (2019) · Zbl 1414.34014
[6] He, J., Variational iteration method—some recent results and new interpretations, J. Comput. Appl. Math., 207, 1, 3-17 (2007) · Zbl 1119.65049
[7] Art. ID 968242 · Zbl 1474.65505
[8] Soltani, L. A.; Shirzadi, A., A new modification of the variational iteration method, Comput. Math. Appl., 59, 8, 2528-2535 (2010) · Zbl 1193.65150
[9] He, J., Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg., 178, 3-4, 257-262 (1999) · Zbl 0956.70017
[10] Noor, M. A.; Mohyud-Din, S. T., Homotopy perturbation method for solving sixth-order boundary value problems, Comput. Math. Appl., 55, 12, 2953-2972 (2008) · Zbl 1142.65386
[11] He, J., Amplitude-frequency relationship for conservative nonlinear oscillators with odd nonlinearities, Int. J. Appl. Comput. Math., 3, 2, 1557-1560 (2017) · Zbl 1397.34093
[12] Kalami Yazdi, M.; Hosseini Tehrani, P., Frequency analysis of nonlinear oscillations via the global error minimization, Nonlinear Eng., 5, 2, 87-92 (2016)
[13] Yazdi, M. K., An accurate relationship between frequency and amplitude to nonlinear oscillations, J. Taibah Univ. Sci., 12, 5, 532-535 (2018)
[14] Askari, H.; Nia, Z. S.; Yildirim, A.; Yazdi, M. K.; Khan, Y., Application of higher order hamiltonian approach to nonlinear vibrating systems, J. Theor. Appl. Mech., 51, 2, 287-296 (2013)
[15] He, J., Hamiltonian approach to nonlinear oscillators, Phys. Lett. A, 374, 23, 2312-2314 (2010) · Zbl 1237.70036
[16] Yildirim, A.; Saadatnia, Z.; Askari, H.; Khan, Y.; Kalamiyazdi, M., Higher order approximate periodic solutions for nonlinear oscillators with the Hamiltonian approach, Appl. Math. Lett., 24, 12, 2042-2051 (2011) · Zbl 1272.70110
[17] Ganji, D. D.; Sadighi, A., Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations, J. Comput. Appl. Math., 207, 1, 24-34 (2007) · Zbl 1120.65108
[18] Mei, S.; Zhang, S., Coupling technique of variational iteration and homotopy perturbation methods for nonlinear matrix differential equations, Comput. Math. Appl., 54, 7-8, 1092-1100 (2007) · Zbl 1267.65102
[19] Papamikos, G.; Robnik, M., WKB approach applied to 1D time-dependent nonlinear Hamiltonian oscillators, J. Phys. A, 45, 1, 015206,11 (2012) · Zbl 1337.34061
[20] Yazdi, M. K., Approximate solutions to nonlinear oscillations via an improved He’s variational approach, Karbala Int. J. Mod. Sci., 2, 4, 289-297 (2016)
[21] Yazdi, M. K.; Ahmadian, H.; Mirzabeigy, A.; Yildirim, A., Dynamic analysis of vibrating systems with nonlinearities, Commun. Theor. Phys., 57, 2, 183-187 (2012) · Zbl 1247.34054
[22] With a foreword by J. M. Sanz-Serna · Zbl 1354.65004
[23] Nonstiff problems · Zbl 0789.65048
[24] Stiff and differential-algebraic problems · Zbl 0729.65051
[25] Iserles, A., A First Course in the Numerical Analysis of Differential Equations, Cambridge Texts in Applied Mathematics (2009), Cambridge University Press, Cambridge · Zbl 1171.65060
[26] Potts, R. B., Differential and difference equations, Amer. Math. Monthly, 89, 6, 402-407 (1982) · Zbl 0498.34049
[27] Cieśliński, J. L., On the exact discretization of the classical harmonic oscillator equation, J. Differ. Equ. Appl., 17, 11, 1673-1694 (2011) · Zbl 1232.65175
[28] Cieśliński, J. L., Comment on ‘conservative discretizations of the Kepler motion’, J. Phys. A, 43, 22, 228001,4 (2010) · Zbl 1241.70018
[29] Cieśliński, J. L., Locally exact modifications of numerical schemes, Comput. Math. Appl., 65, 12, 1920-1938 (2013) · Zbl 1416.65511
[30] Kong, L.; Liu, R.; Zheng, X., A survey on symplectic and multi-symplectic algorithms, Appl. Math. Comput., 186, 1, 670-684 (2007) · Zbl 1114.65153
[31] Leok, M.; Zhang, J., Discrete Hamiltonian variational integrators, IMA J. Numer. Anal., 31, 4, 1497-1532 (2011) · Zbl 1232.65177
[32] Shang, Z., KAM theorem of symplectic algorithms for Hamiltonian systems, Numer. Math., 83, 3, 477-496 (1999) · Zbl 0938.65149
[33] Tang, W.; Zhang, J., Symplecticity-preserving continuous-stage Runge-Kutta-Nyström methods, Appl. Math. Comput., 323, 204-219 (2018) · Zbl 1426.65203
[34] Wang, Y.; Hong, J., Multi-symplectic algorithms for Hamiltonian partial differential equations, Commun. Appl. Math. Comput., 27, 2, 163-230 (2013) · Zbl 1289.65278
[35] Blanes, S.; Casas, F., A Concise Introduction to Geometric Numerical Integration, Monographs and Research Notes in Mathematics (2016), CRC Press, Boca Raton, FL · Zbl 1343.65146
[36] Translated and revised from the Chinese original, with a foreword by Feng Duan · Zbl 1207.65149
[37] Structure-preserving algorithms for ordinary differential equations · Zbl 0994.65135
[38] Leimkuhler, B.; Reich, S., Simulating Hamiltonian Dynamics, Cambridge Monographs on Applied and Computational Mathematics, 14 (2004), Cambridge University Press, Cambridge · Zbl 1069.65139
[39] Sanz-Serna, J. M.; Calvo, M. P., Numerical Hamiltonian Problems (1994), Chapman & Hall/CRC · Zbl 0816.65042
[40] Zhang, J., Locally exact discretization method for nonlinear oscillation systems, J. Low Frequency Noise Vib. Active Control, 38, 3-4, 1567-1575 (2019)
[41] Hairer, E.; Lubich, C.; Wanner, G., Geometric numerical integration illustrated by the Störmer-Verlet method, Acta Numer., 12, 399-450 (2003) · Zbl 1046.65110
[42] Calvo, M.; Franco, J. M.; Montijano, J. I.; Rández, L., Structure preservation of exponentially fitted Runge-Kutta methods, J. Comput. Appl. Math., 218, 2, 421-434 (2008) · Zbl 1154.65341
[43] Hochbruck, M.; Ostermann, A., Exponential integrators, Acta Numer., 19, 209-286 (2010) · Zbl 1242.65109
[44] Ramos, H.; Vigo-Aguiar, J., On the frequency choice in trigonometrically fitted methods, Appl. Math. Lett., 23, 11, 1378-1381 (2010) · Zbl 1197.65082
[45] Simos, T. E., Exponentially-fitted Runge-Kutta-Nyström method for the numerical solution of initial-value problems with oscillating solutions, Appl. Math. Lett., 15, 2, 217-225 (2002) · Zbl 1003.65081
[46] Wu, X.; You, X.; Wang, B., Structure-preserving algorithms for oscillatory differential equations (2013), Springer, Heidelberg; Science Press Beijing, Beijing · Zbl 1276.65041
[47] Süli, E.; Mayers, D. F., An Introduction to Numerical Analysis (2003), Cambridge University Press · Zbl 1033.65001
[48] Van Daele, M.; Vanden Berghe, G., Geometric numerical integration by means of exponentially-fitted methods, Appl. Numer. Math., 57, 4, 415-435 (2007) · Zbl 1116.65125
[49] Gautschi, W., Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math., 3, 381-397 (1961) · Zbl 0163.39002
[50] Ramos, H.; Vigo-Aguiar, J., A trigonometrically-fitted method with two frequencies, one for the solution and another one for the derivative, Comput. Phys. Commun., 185, 4, 1230-1236 (2014) · Zbl 1344.65061
[51] Vigo-Aguiar, J.; Ramos, H., A strategy for selecting the frequency in trigonometrically-fitted methods based on the minimization of the local truncation errors and the total energy error, J. Math. Chem., 52, 4, 1050-1058 (2014) · Zbl 1300.65049
[52] Vigo-Aguiar, J.; Ramos, H., On the choice of the frequency in trigonometrically-fitted methods for periodic problems, J. Comput. Appl. Math., 277, 94-105 (2015) · Zbl 1302.65161
[53] Nonlinear oscillators and their behaviour
[54] Beléndez, A.; Beléndez, T.; Martínez, F. J.; Pascual, C.; Alvarez, M. L.; Arribas, E., Exact solution for the unforced Duffing oscillator with cubic and quintic nonlinearities, Nonlinear Dyn., 86, 3, 1687-1700 (2016) · Zbl 1371.34057
[55] Belendez, A.; Rodes, J. J.; Belendez, T.; Hernandez, A., Reply to ‘comment on “Approximation for the large-angle simple pendulum period”’, Eur. J. Phys., 30, 5, L83-L86 (2009)
[56] Dai, H.-H.; Schnoor, M.; Atluri, S. N., A simple collocation scheme for obtaining the periodic solutions of the Duffing equation, and its equivalence to the high dimensional harmonic balance method: subharmonic oscillations, CMES Comput. Model. Eng. Sci., 84, 5, 459-497 (2012) · Zbl 1356.65193
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.