×

Locally exact modifications of numerical schemes. (English) Zbl 1416.65511

Summary: We present a new class of exponential integrators for ordinary differential equations: locally exact modifications of known numerical schemes. Local exactness means that they preserve the linearization of the original system at every point. In particular, locally exact integrators preserve all fixed points and are A-stable. We apply this approach to popular schemes including Euler schemes, the implicit midpoint rule, and the trapezoidal rule. We found locally exact modifications of discrete gradient schemes (for symmetric discrete gradients and coordinate increment discrete gradients) preserving their main geometric property: exact conservation of the energy integral (for arbitrary multidimensional Hamiltonian systems in canonical coordinates). Numerical experiments for a two-dimensional anharmonic oscillator show that locally exact schemes have very good accuracy in the neighbourhood of stable equilibrium, much higher than suggested by the order of new schemes (locally exact modification sometimes increases the order but in many cases leaves it unchanged).

MSC:

65P10 Numerical methods for Hamiltonian systems including symplectic integrators

Software:

phipm; Algorithm 919

References:

[1] Cieśliński, J. L.; Ratkiewicz, B., Long-time behaviour of discretizations of the simple pendulum equation, J. Phys. A, 42, 105204 (2009) · Zbl 1160.65064
[2] LaBudde, R. A.; Greenspan, D., Discrete mechanics — a general treatment, J. Comput. Phys., 15, 134-167 (1974) · Zbl 0301.70006
[3] McLachlan, R. I.; Quispel, G. R.W.; Robidoux, N., Geometric integration using discrete gradients, Phil. Trans. R. Soc. Lond. Ser. A, 357, 1021-1045 (1999) · Zbl 0933.65143
[4] Quispel, G. R.W.; Turner, G. S., Discrete gradient methods for solving ODE’s numerically while preserving a first integral, J. Phys. A: Math. Gen., 29, L341-L349 (1996) · Zbl 0901.34022
[5] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms For Ordinary Differential Equations (2006), Springer: Springer Berlin · Zbl 1094.65125
[6] Iserles, A., Insight, not just numbers, (Sydow, A., Proceedings of the 15th IMACS World Congress, Vol. II (1997), Wissenschaft & Technik Verlag: Wissenschaft & Technik Verlag Berlin), 589-594
[7] Cieśliński, J. L.; Ratkiewicz, B., Improving the accuracy of the discrete gradient method in the one-dimensional case, Phys. Rev. E, 81, 016704 (2010)
[8] Cieśliński, J. L.; Ratkiewicz, B., Energy-preserving numerical schemes of high accuracy for one-dimensional Hamiltonian systems, J. Phys. A, 44, 155206 (2011) · Zbl 1218.65144
[9] Pope, D. A., An exponential method of numerical integration of ordinary differential equations, Commun. ACM, 6, 8, 491-493 (1963) · Zbl 0117.11204
[10] Lawson, D. J., Generalized Ruge-Kutta processes for stable systems with large Lipschitz constants, SIAM J. Numer. Anal., 4, 372-380 (1967) · Zbl 0223.65030
[11] McLachlan, R. I.; Quispel, G. R.W.; Tse, P. S.P., Linearization-preserving self-adjoint and symplectic integrators, BIT, 49, 177-197 (2009) · Zbl 1162.65411
[12] Mickens, R. E., Nonstandard Finite Difference Models of Differential Equations (1994), World Scientific: World Scientific Singapore · Zbl 0810.65083
[13] Hochbruck, M.; Lubich, Ch., A Gautschi-type method for oscillatory second-order differential equations, Numer. Math., 83, 403-426 (1999) · Zbl 0937.65077
[14] Celledoni, E.; Cohen, D.; Owren, B., Symmetric exponential integrators with an application to the cubic Schrödinger equation, Found. Comput. Math., 8, 303-317 (2008) · Zbl 1147.65102
[15] Hochbruck, M.; Lubich, Ch., On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34, 1911-1925 (1997) · Zbl 0888.65032
[17] Potts, R. B., Differential and difference equations, Amer. Math. Monthly, 89, 402-407 (1982) · Zbl 0498.34049
[18] Agarwal, R. P., Difference Equations and Inequalities (2000), Marcel Dekker: Marcel Dekker New York, (Chapter 3) · Zbl 0952.39001
[19] Cieśliński, J. L.; Ratkiewicz, B., On simulations of the classical harmonic oscillator equation by difference equations, Adv. Difference Equ., 2006, 40171 (2006) · Zbl 1139.65056
[20] Cieśliński, J. L., An orbit-preserving discretization of the classical Kepler problem, Phys. Lett. A, 370, 8-12 (2007) · Zbl 1209.70003
[21] Cieśliński, J. L., Comment on ‘Conservative discretizations of the Kepler motion’, J. Phys. A, 43, 228001 (2010) · Zbl 1241.70018
[22] Cieśliński, J. L., On the exact discretization of the classical harmonic oscillator equation, J. Difference Equ. Appl., 17, 1673-1694 (2011) · Zbl 1232.65175
[23] Cieśliński, J. L.; Ratkiewicz, B., Discrete gradient algorithms of high-order for one-dimensional systems, Comput. Phys. Comm., 183, 617-627 (2012) · Zbl 1264.65207
[24] Gonzales, O., Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 6, 449-467 (1996) · Zbl 0866.58030
[25] Greenspan, D., An algebraic, energy conserving formulation of classical molecular and Newtonian \(n\)-body interaction, Bull. Amer. Math. Soc., 79, 423-427 (1973) · Zbl 0266.70004
[26] Itoh, T.; Abe, K., Hamiltonian conserving discrete canonical equations based on variational difference quotients, J. Comput. Phys., 77, 85-102 (1988) · Zbl 0656.70015
[27] Butcher, J. C., Numerical Methods for Ordinary Differential Equations (2008), Wiley & Sons: Wiley & Sons Chichester · Zbl 1167.65041
[28] Iserles, A., A First Course in the Numerical Analysis of Differential Equations (2009), Cambridge Univ. Press · Zbl 1171.65060
[29] Niesen, J.; Wright, W. M., Algorithm 919: a Krylov subspace algorithm for evaluating the \(\varphi \)-functions appearing in exponential integrators, ACM Trans. Math. Software, 38, 3 (2012), article 22 · Zbl 1365.65185
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.