×

Automorphic forms for some even unimodular lattices. (English) Zbl 1483.11089

B. Venkov and the reviewer [J. Reine Angew. Math. 531, 49–60 (2001; Zbl 0997.11039)] developed elementary linear algebra methods to compute Hecke eigenforms as formal linear combinations of isometry classes of lattices in the genus of 24-dimensional even unimodular lattices. With the help of an inner product and a multiplication on this space, they could determine most of the degrees of the corresponding Siegel modular forms. The remaining ones have been computed in the fundamental book [G. Chenevier and J. Lannes, Automorphic forms and even unimodular lattices. Kneser neighbors of Niemeier lattices. Translated by R. Erné. Cham: Springer (2019; Zbl 1430.11001)] using more sophisticated methods. The present paper continues in this spirit investigating Hilbert modular forms that arise as linear combinations of theta series of even unimodular lattices of rank \(\leq 12\) respectively \(\leq 8\) over the three real quadratic fields of discriminant \(5\) respectively \(8\) and \(12\).
The authors also investigate degree questions for the two genera of Hermitian Eisenstein lattices of rank 12 that are either even unimodular of dimension \(24\) over \({\mathbb Z}\) or Hermitian unimodular over the Eisenstein integers. For all these genera the authors explicitly computed Kneser neighbouring operators for certain small prime ideals using Kirschmer’s Magma library for lattices over number rings. These are self-adjoint operators whose eigenvalues are often rational, though some quadratic irrationalities arise, apparently unrelated to the ground field. Computing some coefficients of the Siegel theta series of these eigenvectors gives a hint on their degrees. The authors use clever arguments to prove almost all of these degrees and conjecture the corresponding global Arthur parameters.

MSC:

11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
11F27 Theta series; Weil representation; theta correspondences
11F33 Congruences for modular and \(p\)-adic modular forms
11E12 Quadratic forms over global rings and fields
11E39 Bilinear and Hermitian forms

References:

[1] Arthur, J.: The endoscopic classification of representations. In: Orthogonal and Symplectic Groups. American Mathematical Society Colloquium Publications, vol. 61. American Mathematical Society, Providence (2013). xviii+590 pp · Zbl 1297.22023
[2] Atobe, H., A theory of Miyawaki liftings: the Hilbert-Siegel case, Math. Ann., 376, 1467-1535 (2020) · Zbl 1471.11152 · doi:10.1007/s00208-019-01946-w
[3] Atobe, H.; Kojima, H., On the Miyawaki lifts of Hermitian modular forms, J. Number Theory, 185, 281-318 (2018) · Zbl 1431.11065 · doi:10.1016/j.jnt.2017.09.005
[4] Benham, JW; Hsia, JS, Spinor equivalence of quadratic forms, J. Number Theory, 17, 337-342 (1983) · Zbl 0532.10012 · doi:10.1016/0022-314X(83)90051-3
[5] Bergström, J.; Dummigan, N., Eisenstein congruences for split reductive groups, Sel. Math., 22, 1073-1115 (2016) · Zbl 1404.11048 · doi:10.1007/s00029-015-0211-0
[6] Böcherer, S.: Siegel modular forms and theta series. In: Theta Functions-Bowdoin 1987, AMS Proc. Symp. Pure. Math., vol. 49, Part 2, pp. 3-17. Amer. Math. Soc., Providence, RI (1989) · Zbl 0681.10019
[7] Böcherer, S.: On Yoshida’s theta lift. In: Cohomology of Arithmetic Groups and Automorphic forms (Luminy-Marseille, 1989), Lecture Notes in Math., vol. 1447, pp. 77-83. Springer, Berlin (1990) · Zbl 0721.11016
[8] Brown, AF; Ghate, EP, Dihedral congruence primes and class fields of real quadratic fields, J. Number Theory, 95, 14-37 (2002) · Zbl 1030.11021 · doi:10.1006/jnth.2001.2753
[9] Carayol, H.: Sur les représentations \(\ell \)-adiques associées aux formes modulaires de Hilbert. Ann. Sci.École Norm. Sup. (4) 19, 409-468 (1986) · Zbl 0616.10025
[10] Chenevier, G.; Lannes, J., Automorphic Forms and Even Unimodular Lattices, Ergebnisse der Mathematik und ihre Grenzgebiete (2019), Cham: Springer, Cham · Zbl 1430.11001 · doi:10.1007/978-3-319-95891-0
[11] Chenevier, G., Renard, D.: Level One Algebraic Cusp Forms of Classical Groups of Small Rank, vol. 237, issue 1121, p. 128. Mem. Am. Math. Soc. (2015) · Zbl 1376.11036
[12] Cohen, DM; Resnikoff, HL, Hermitian quadratic forms and Hermitian modular forms, Pacific J. Math., 76, 329-337 (1978) · Zbl 0389.10024 · doi:10.2140/pjm.1978.76.329
[13] Costello, PJ; Hsia, JS, Even unimodular \(12\)-dimensional quadratic forms over \({\mathbb{Q}}(\sqrt{5})\), Adv. Math., 64, 241-278 (1987) · Zbl 0622.10015 · doi:10.1016/0001-8708(87)90009-0
[14] Conrad, B.: Reductive Group Schemes, Notes. http://math.stanford.edu/ conrad/papers/luminysga3smf.pdf · Zbl 1349.14151
[15] Conway, JH; Sloane, NJA, Sphere Packings, Lattices and Groups, Grundlehren der mathematischen Wissenschaften (1993), New York: Springer, New York · Zbl 0785.11036 · doi:10.1007/978-1-4757-2249-9
[16] Dummigan, N.: Twisted adjoint \(L\)-values, dihedral congruence primes and the Bloch-Kato conjecture. In: Abh. Math. Semin. Univ. Hambg. (2020). doi:10.1007/s12188-020-00224-w · Zbl 1469.11089
[17] Dummigan, N.; Schönnenbeck, S., Automorphic forms on Feit’s Hermitian lattices, Exp. Math. (2019) · Zbl 1487.11047 · doi:10.1080/10586458.2019.1581857
[18] Dummigan, N., Spencer, D.: Congruences of local origin and automorphic induction. Int. J. Number Theory. (To appear) · Zbl 1480.11052
[19] Eischen, E., Harris, M., Li, J.-S., Skinner, C.M.: \(p\)-adic \(L\)-functions for unitary groups. arXiv:1602.01776v3 · Zbl 1473.11118
[20] Gan, WT; Qiu, Y.; Takeda, S., The regularized Siegel-Weil formula (the second term identity) and the Rallis inner product formula, Invent. Math., 198, 739-831 (2014) · Zbl 1320.11037 · doi:10.1007/s00222-014-0509-0
[21] Greenberg, M., Voight, J.: Lattice methods for algebraic modular forms on classical groups. In: Computations with Modular Forms, Contrib. Math. Comput. Sci. vol. 6, pp. 147-179. Springer, Cham (2014) · Zbl 1375.11043
[22] Gross, B.H.: On the Satake transform. In: Scholl, A.J., Taylor, R.L. (eds.) Galois Representations in Arithmetic Algebraic Geometry, London Mathematical Society Lecture Note Series, vol. 254, pp. 223-237. Cambridge University Press, Cambridge (1998) · Zbl 0996.11038
[23] Gross, BH, Algebraic modular forms, Israel J. Math., 113, 61-93 (1999) · Zbl 0965.11020 · doi:10.1007/BF02780173
[24] Harris, M.; Kudla, SS; Sweet, WJ, Theta dichotomy for unitary groups, J. Am. Math. Soc., 9, 941-1004 (1996) · Zbl 0870.11026 · doi:10.1090/S0894-0347-96-00198-1
[25] Harris, M., Li, J.-S., Skinner, C.M.: \(p\)-adic \(L\)-functions for unitary Shimura varieties. I. Construction of the Eisenstein measure. In: Doc. Math., Extra Vol., pp. 393-464 (2006) · Zbl 1143.11019
[26] Hentschel, M., Krieg, A., Nebe, G.: On the classification of lattices of \({\mathbb{Q}}(\sqrt{-3})\), which are even unimodular \({\mathbb{Z}} \)-lattices. In: Abh. Math. Sem. Univ. Hamburg, vol. 80, pp. 183-192 (2010) · Zbl 1229.11062
[27] Hentschel, M.; Nebe, G., Hermitian modular forms congruent to \(1\) modulo \(p\), Arch. Math. (Basel), 92, 251-256 (2009) · Zbl 1213.11107 · doi:10.1007/s00013-008-3072-3
[28] Hida, H., Congruences of cusp forms and special values of their zeta functions, Invent. math, 63, 225-261 (1981) · Zbl 0459.10018 · doi:10.1007/BF01393877
[29] Hida, H., Geometric Modular Forms and Elliptic Curves (2000), River Edge: World Scientific Publishing Co., Inc, River Edge · Zbl 0960.11032 · doi:10.1142/4449
[30] Hsia, JS, Even positive definite unimodular quadratic forms over real quadratic fields, Rocky Mt. J. Math., 19, 725-733 (1989) · Zbl 0708.11023 · doi:10.1216/RMJ-1989-19-3-725
[31] Hsia, JS; Hung, DC, Even unimodular \(8\)-dimensional quadratic forms over \({\mathbb{Q}}(\sqrt{2})\), Math. Ann., 283, 367-374 (1989) · Zbl 0643.10013 · doi:10.1007/BF01442734
[32] Hung, DC, Even positive definite unimodular quadratic forms over \({\mathbb{Q}}(\sqrt{3})\), Math. Comput., 57, 351-368 (1991) · Zbl 0731.11024
[33] Ichino, A., A regularized Siegel-Weil formula for unitary groups, Math. Z., 247, 241-277 (2004) · Zbl 1071.11022 · doi:10.1007/s00209-003-0580-5
[34] Ichino, A., On the Siegel-Weil formula for unitary groups, Math. Z., 255, 721-729 (2007) · Zbl 1223.11056 · doi:10.1007/s00209-006-0045-8
[35] Ikeda, T., On the lifting of elliptic cusp forms to Siegel cusp forms of degree \(2n\), Ann. Math., 2, 154, 641-681 (2001) · Zbl 0998.11023 · doi:10.2307/3062143
[36] Ikeda, T., Pullback of the lifting of elliptic cusp forms and Miyawaki’s conjecture, Duke Math. J., 131, 469-497 (2006) · Zbl 1112.11022 · doi:10.1215/S0012-7094-06-13133-2
[37] Ikeda, T., On the lifting of Hermitian modular forms, Compos. Math., 144, 1107-1154 (2008) · Zbl 1155.11025 · doi:10.1112/S0010437X08003643
[38] Ikeda, T., Yamana, S.: On the lifting of Hilbert cusp forms to Hilbert-Siegel cusp forms. Ann. Sci. Éc. Norm. Sup. (4) (To appear). http://syamana.sub.jp/Lifting.pdf · Zbl 1475.11078
[39] Jacobowitz, R., Hermitian forms over local fields, Am. J. Math., 84, 441-465 (1962) · Zbl 0118.01901 · doi:10.2307/2372982
[40] Johnson-Leung, J.; Roberts, B., Siegel modular forms of degree two attached to Hilbert modular forms, J. Number Theory, 132, 543-564 (2012) · Zbl 1272.11063 · doi:10.1016/j.jnt.2011.08.004
[41] Katsurada, H., Special values of the standard zeta functions for elliptic modular forms, Exp. Math., 14, 27-45 (2005) · Zbl 1173.11330 · doi:10.1080/10586458.2005.10128910
[42] Kuang, JH, On the linear representability of Siegel-Hilbert modular forms by theta series, Am. J. Math., 116, 921-994 (1994) · Zbl 0810.11032 · doi:10.2307/2375006
[43] Lanphier, D.; Urtis, C., Arithmeticity of holomorphic cuspforms on Hermitian symmetric domains, J. Number Theory, 151, 230-262 (2015) · Zbl 1394.11039 · doi:10.1016/j.jnt.2014.12.015
[44] Li, J-S, Non-vanishing theorems for the cohomology of certain arithmetic quotients, J. Reine Angew. Math., 428, 177-217 (1992) · Zbl 0749.11032
[45] Liu, Y., Arithmetic theta lifting and \(L\)-derivatives for unitary groups, I, Algebra Number Theory, 5, 849-921 (2011) · Zbl 1258.11060 · doi:10.2140/ant.2011.5.849
[46] Liu, Z.: \(p\)-adic \(L\)-functions for ordinary families on symplectic groups. Preprint at http://www.math.mcgill.ca/zliu/SLF (2016)
[47] Maass, H., Modulformen und quadratische Formen über dem quadratischen Zahlkörper \(R(\sqrt{5})\), Math. Ann., 118, 65-84 (1941) · JFM 67.0295.01 · doi:10.1007/BF01487355
[48] Minguez, A.: Unramified representations of unitary groups. In: On the Stabilisation of the Trace Formula, pp. 389-410. Int. Press, Somerville (2011)
[49] Miyawaki, I., Numerical examples of Siegel cusp forms of degree 3 and their zeta functions, Mem. Fac. Sci. Kyushu Univ., 46, 307-339 (1992) · Zbl 0780.11022
[50] Moeglin, C., Quelques propriétés de base de séries théta, J. Lie Theory, 7, 231-238 (1997) · Zbl 0885.22020
[51] Moriyama, T.: Representations of \({{\rm GSp}} (4,{R})\) with emphasis on discrete series. In: Furusawa, M. (ed.) Automorphic forms on \({{\rm GSp}}(4)\), Proceedings of the \(9\) th Autumn Workshop on Number Theory, Hakuba, Japan, November 6-10, 2006
[52] Nebe, G.; Venkov, B., On Siegel modular forms of weight \(12\), J. Reine Angew. Math., 531, 49-60 (2001) · Zbl 0997.11039
[53] O’Meara, OT, The integral representations of quadratic forms over local fields, Am. J. Math., 80, 843-878 (1958) · Zbl 0085.02801 · doi:10.2307/2372837
[54] Rallis, S., Langlands’ functoriality and the Weil representation, Am. J. Math., 104, 469-515 (1982) · Zbl 0532.22016 · doi:10.2307/2374151
[55] Roberts, B., Global \(L\)-packets for \({{\rm GSp}}(2)\) and theta lifts, Doc. Math., 6, 247-314 (2001) · Zbl 1056.11029
[56] Scharlau, R., Unimodular lattices over real quadratic fields, Math. Zeit., 216, 437-452 (1994) · Zbl 0807.11021 · doi:10.1007/BF02572333
[57] Serre, J-P, A Course in Arithmetic, Graduate texts in Mathematics (1973), New York: Springer, New York · Zbl 0256.12001 · doi:10.1007/978-1-4684-9884-4
[58] Schmidt, R.; Shukla, A., On Klingen-Eisenstein series with level in degree two, J. Ramanujan Math. Soc., 34, 373-388 (2019) · Zbl 1441.11113
[59] Shimura, G., Arithmetic of unitary groups, Ann. Math., 79, 369-409 (1964) · Zbl 0144.29504 · doi:10.2307/1970551
[60] Shimura, G., Eisenstein series and zeta functions on symplectic groups, Invent. math., 119, 539-584 (1995) · Zbl 0845.11020 · doi:10.1007/BF01245192
[61] Taïbi, O., Arthur’s multiplicity formula for certain inner forms of special orthogonal and symplectic groups, J. Eur. Math. Soc. (JEMS), 21, 839-871 (2019) · Zbl 1430.11074 · doi:10.4171/JEMS/852
[62] Takada, I., On the classification of definite unimodular lattices of the the ring of integers in \({\mathbb{Q}}(\sqrt{2})\), Math. Japonica, 30, 423-433 (1985) · Zbl 0572.10016
[63] Tits, J.: Reductive groups over local fields. In: AMS Proc. Symp. Pure Math., vol. 33, part 1, pp. 29-69 (1979) · Zbl 0415.20035
[64] Voight, J.: Quaternion Algebras, v.0.9.15, May 26th 2019. https://math.dartmouth.edu/ jvoight/quat-book.pdf
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.