×

Multiplicity results on periodic solutions to higher-dimensional differential equations with multiple delays. (English) Zbl 1311.34153

Summary: This paper continues our study on the existence and multiplicity of periodic solutions to delay differential equations of the form \[ \dot{z}(t)=-f(z(t-1))-f(z(t-2))-\cdots -f(z(t- n+1)), \] where \(z\in\mathbb{R}^N\), \(f\in C(\mathbb{R}^N, \mathbb{R}^N)\) and \(n>1\) is an odd number. By using the Galerkin approximation method and the \(S^1\)-index theory in the critical point theory, some known results for Kaplan-Yorke type differential delay equations are generalized to the higher-dimensional case. As a result, the Kaplan-Yorke conjecture is proved to be true in the case of higher-dimensional systems.

MSC:

34K13 Periodic solutions to functional-differential equations
34K07 Theoretical approximation of solutions to functional-differential equations
58E50 Applications of variational problems in infinite-dimensional spaces to the sciences

References:

[1] O. Arino and A.A. Cherif, An exact formula for the branch of period-\(4\)-solutions of \(\dot{x}=-\la f(x(t-1))\) which bifurcates at \(\la=\pi/2\) , Diff. Int. Eq. 2 (1989), 162-169. · Zbl 0723.34052
[2] —-, More on ordinary differential equations which yield periodic solutions of delay differential equations , J. Math. Anal. Appl. 180 (1993), 361-385. · Zbl 0798.34067 · doi:10.1006/jmaa.1993.1406
[3] V. Benci, On critical point theory for indefinite functionals in the presence of symmetries , Trans. Amer. Math. Soc. 274 (1982), 533-572. · Zbl 0504.58014 · doi:10.2307/1999120
[4] V. Benci and P.H. Rabinowitz, Critical point theorems for indefinite functionals , Invent. Math. 52 (1979), 241-273. · Zbl 0465.49006 · doi:10.1007/BF01389883
[5] Y. Chen, The existence of periodic solutions of the equation \(x'(t)=-f(x(t), x(t-\tau))\) , J. Math. Anal. Appl. 163 (1992), 227-237. · Zbl 0755.34063 · doi:10.1016/0022-247X(92)90290-T
[6] —-, The existence of periodic solutions for a class of neutral differential difference equations , J. Austr. Math. Soc. 33 (1992), 508-516. · Zbl 0755.34062 · doi:10.1017/S0334270000007190
[7] R. Cheng and J. Xu, Periodic solutions for a class of non-autonomous differential delay equation , Nonlin. Differ. Eq. Appl. 16 (2009), 793-809. · Zbl 1186.34091 · doi:10.1007/s00030-009-0035-8
[8] A. Cima, J. Li and J. Llibre, Periodic solutions of delay differential equations with two delays via bi-Hamiltonian systems , Ann. Differ. Eq. 17 (2001), 205-214. · Zbl 1005.34063
[9] M. Degiovanni and L.O. Fannio, Multiple periodic solutions of asymptotically linear Hamiltonian systems , Nonlin. Anal. 26 (1996), 1437-1446. · Zbl 0851.34047 · doi:10.1016/0362-546X(94)00274-L
[10] P. Dormayer, Exact formulae for periodic solutions of \(\dot{x}(t+1)=\al (-x(t)+x^3(t))\) , Z. angew. Math. Phys. 37 (1986), 765-775. · Zbl 0631.34080 · doi:10.1007/BF00947921
[11] G. Fei, Multiple periodic solutions of differential delay equations via Hamiltonian systems (I), Nonlin. Anal. 65 (2006), 25-39. · Zbl 1136.34329 · doi:10.1016/j.na.2005.06.011
[12] —-, Multiple periodic solutions of differential delay equations via Hamiltonian systems (II), Nonlin. Anal. 65 (2006), 40-58. · Zbl 1136.34330 · doi:10.1016/j.na.2005.06.012
[13] W. Ge, The number of simple periodic solutions to the differential-difference equation \(\dot{x}(t)=f(x(t-1))\) , Chin. Ann. Math. 14 (1993), 472-479. · Zbl 0787.34058
[14] —-, Oscillatory periodic solutions of differential delay equations with multiple lags , Chin. Sci. Bull. 42 (1997), 444-447. · Zbl 0886.34060 · doi:10.1007/BF02882587
[15] W. Ge and Y. Yu, Further results on the existence of periodic solutions to DDE, with multiple lags , Acta Math. Appl. Sinica 15 (1999), 190-196. · Zbl 0936.34056 · doi:10.1007/BF02720495
[16] K. Gopalsamy, J. Li and X. He, On the construction of periodic solutions of Kaplan-Yorke type for some differential delay equations , Appl. Anal. 59 (1995), 65-80. · Zbl 0845.34073 · doi:10.1080/00036819508840390
[17] Z. Guo and J. Yu, Multiplicity results on periodic solutions to higher dimensional differential equations with multiple delays , J. Dyn. Diff. Eq., · Zbl 1243.34101 · doi:10.1007/s10884-011-9228-z
[18] A.V. Herz, Solution of \(\dot{x}(t)=-g(x(t-1))\) approach the Kaplan-Yorke orbits for odd sigmoid , J. Diff. Eq. 118 (1995), 36-53. · Zbl 0823.34068 · doi:10.1006/jdeq.1995.1066
[19] S. Jekel and C. Johnston, A Hamiltonian with periodic orbits having several delays , J. Diff. Eq. 222 (2006), 425-438. · Zbl 1163.34386 · doi:10.1016/j.jde.2005.08.013
[20] J.L. Kaplan and J.A. Yorke, Ordinary differential equations which yield periodic solutions of differential delay equations , J. Math. Anal. Appl. 48 (1974), 317-324. · Zbl 0293.34102 · doi:10.1016/0022-247X(74)90162-0
[21] J. Li and X. He, Multiple periodic solutions of differential delay equations created by asymptotically linear Hamiltonian systems , Nonlin. Anal. 31 (1998), 45-54. · Zbl 0918.34066 · doi:10.1016/S0362-546X(96)00058-2
[22] —-, Proof and generalization of Kaplan-Yorke’s conjecture on periodic solution of differential delay equations , Sci. China 42 (1999), 957-964. · Zbl 0983.34061 · doi:10.1007/BF02880387
[23] —-, Periodic solutions of some differential delay equations created by Hamiltonian systems , Bull. Austr. Math. Soc. 60 (1999), 377-390. · Zbl 0946.34063 · doi:10.1017/S000497270003656X
[24] S. Li and J. Liu, Morse theory and asymptotica linear Hamiltonian systems , J. Differ. Eq. 78 (1989), 53-73. · Zbl 0672.34037 · doi:10.1016/0022-0396(89)90075-2
[25] J. Li, X. Zhao and Z. Liu, Theory and applications of generalized Hamiltonian system , Science Press, Beijing, 1994.
[26] J. Llibre and A.A. Tarta, Periodic solutions of delay equations with three delays via bi-Hamiltonian systems , Nonlin. Anal. TMA 64 (2006), 2433-2441. · Zbl 1101.34055 · doi:10.1016/j.na.2005.08.023
[27] J. Mawhin and M. Willem, Critical point theory and hamiltonian systems , Appl. Math. Sci. 74 , Springer-Verlag, New York, 1989. · Zbl 0676.58017
[28] R.D. Nussbaum, Periodic solutions of special differential equations : An example in non-linear functional analysis , Proc. Roy. Soc. Edinb. 81 (1978), 131-151. · Zbl 0402.34061 · doi:10.1017/S0308210500010490
[29] P.J. Olver, Applications of Lie groups to differential equations , Springer-Verlag, New York, 1993. · Zbl 0785.58003
[30] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations , CBMS Reg. Conf. Ser. Math. 65 , (1986). · Zbl 0609.58002
[31] A. Szulkin, Cohomology and Morse theory for strongly indefinite functionals , Math. Z. 209 (1992), 375-418. · Zbl 0735.58012 · doi:10.1007/BF02570842
[32] L. Wen, Existence of periodic solutions to a class of differential-difference equations , Chin. Ann. Math. 10 (1989), 249-254. · Zbl 0711.34092
[33] L. Wen and H. Xia, Existence of periodic solutions for differential-difference equation with two time laps , Sci. Sin. 31 (1988), 777-786. · Zbl 0682.34048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.