×

Multiplicity results on period solutions to higher dimensional differential equations with multiple delays. (English) Zbl 1243.34101

The authors consider the multi-dimensional differential delay equation \[ x^{\,\prime}(t)=-f(x(t-1))-f(x(t-2))-\dots-f(x(t-2n+1)),\quad x\in\mathbb R^N,\tag{\(*\)} \] under the following basic assumptions
(i)
\(f\in C(\mathbb R^N,\mathbb R^N)\) and \(f\) is odd, \(f(-x)=-f(x)\; \forall x\in\mathbb R^N\);
(ii)
there exists a continuously differentiable function \(F\) satisfying \(F(0)=0\) and \(\nabla F\equiv f\);
(iii)
\[ f(x)=A_0x+o(|x|)\;\text{as}\; |x|\to 0, \quad f(x)=A_{\infty}x+o(|x|)\text{ as } |x|\to\infty, \] where \(A_0\) and \(A_{\infty}\) are symmetric \(N\times N\) matrices.
Sufficient conditions for the existence of periodic solutions of period \(4n\), including multiple periodic solutions, satisfying the additional “symmetry” condition \(x(t-2n)\equiv-x(t)\) are given. The paper is built upon and continues the prior work of the authors done for the particular case of \(n=1\) (see [J. Differ. Equations 218, No. 1, 15–35 (2005; Zbl 1095.34043)]). The pioneering work by J. L. Kaplan and J. A. Yorke of 1974, including a conjecture therein, is another motivation for this work (see [J. Math. Anal. Appl. 48, 317–324 (1974; Zbl 0293.34102)]).

MSC:

34K13 Periodic solutions to functional-differential equations
58E50 Applications of variational problems in infinite-dimensional spaces to the sciences
Full Text: DOI

References:

[1] Benci V.: On critical point theory for indefinite functionals in the presence of symmetries. Trans. Am. Math. Soc. 274, 533–572 (1982) · Zbl 0504.58014 · doi:10.1090/S0002-9947-1982-0675067-X
[2] Benci V., Rabinowitz P.H.: Critical point theorems for indefinite functionals. Invent. Math. 53, 241–273 (1979) · Zbl 0465.49006 · doi:10.1007/BF01389883
[3] Chen Y.-S.: The existence of periodic solutions of the equation x’(t) = (x(t), x(t r)). J. Math. Anal. Appl. 163, 227–237 (1992) · Zbl 0755.34063 · doi:10.1016/0022-247X(92)90290-T
[4] Cheng R., Xu J.: Periodic solutions for a class of non-autonomous differential delay equation. Nonlinear Differ. Equ. Appl. 16, 793–809 (2009) · Zbl 1186.34091 · doi:10.1007/s00030-009-0035-8
[5] Chow S.N., Mallet-Paret J.: The Fuller index and global Hopf bifurcation. J. Differ. Equ. 29, 66–85 (1978) · Zbl 0369.34020 · doi:10.1016/0022-0396(78)90041-4
[6] Cima A., Li J., Llibre J.: Periodic solutions of delay differential equations with two delays via bi-Hamiltonian systems. Ann. Differ. Equ. 17, 205–214 (2001) · Zbl 1005.34063
[7] Degiovanni M., Fannio L.O.: Multiple peroidic solutions of asympototically linear Hamiltonian systems. Nonlinear Anal. TMA 26, 1437–1446 (1996) · Zbl 0851.34047 · doi:10.1016/0362-546X(94)00274-L
[8] Diekmann O., van Gils S.A., Lunel S.M.V., Walther H.O.: Delay-Equations: Functional, Complex and Nonlinear Analysis. Springer-Verlag, New York (1995) · Zbl 0826.34002
[9] Fei G.: Multiple periodic solutions of differential delay equations via Hamiltonian systems (I). Nonlinear Anal. TMA 65, 25–39 (2006) · Zbl 1136.34329 · doi:10.1016/j.na.2005.06.011
[10] Fei G.: Multiple periodic solutions of differential delay equations via Hamiltonian systems (II). Nonlinear Anal. TMA 65, 40–58 (2006) · Zbl 1136.34330 · doi:10.1016/j.na.2005.06.012
[11] Ge W.G.: Number of simple periodic solutions of differential difference equation x’(t) = f(x(t 1)). Chin. Ann. Math. 14A, 480 (1993) · Zbl 0787.34058
[12] Grafton R.B.: A periodicity theorem for autonomous functional differential equations. J. Differ. Equ. 6, 87–109 (1969) · Zbl 0175.38503 · doi:10.1016/0022-0396(69)90119-3
[13] Guo C.J., Guo Z.M.: Existence of multiple periodic solutions for a class of second-order delay differential equations. Nonlinear Anal. RWA 10, 3285–3297 (2009) · Zbl 1190.34083 · doi:10.1016/j.nonrwa.2008.10.023
[14] Guo Z.M., Yu J.S.: Multiplicity results for periodic solutions to delay differential difference equations via critical point theory. J. Differ. Equ. 218, 15–35 (2005) · Zbl 1095.34043 · doi:10.1016/j.jde.2005.08.007
[15] Hale J.K.: Theory of Functional Differential Equations. Springer-Verlag, New York (1977) · Zbl 0352.34001
[16] Hale J.K., Lunel S.M.V.: Introduction to Functional Differential Equations. Springer-Verlag, New York (1993) · Zbl 0787.34002
[17] Jekel S., Johnston C.: A Hamiltonian with periodic orbits having several delays. J. Differ. Equ. 222, 425–438 (2006) · Zbl 1163.34386 · doi:10.1016/j.jde.2005.08.013
[18] Jones G.S.: The existence of periodic solutions of f’(x) = f(x 1)[1 + f(x)]. J. Math. Anal. Appl. 5, 435–450 (1962) · Zbl 0106.29504 · doi:10.1016/0022-247X(62)90017-3
[19] Kaplan J.L., Yorke J.A.: Ordinary differential equations which yield periodic solution of delay equations. J. Math. Anal. Appl. 48, 317–324 (1974) · Zbl 0293.34102 · doi:10.1016/0022-247X(74)90162-0
[20] Kaplan J.L., Yorke J.A.: On the stability of a periodic solution of a differential delay equation. SIAM J. Math. Anal. 6, 268–282 (1975) · doi:10.1137/0506028
[21] Li J.B., He X.Z.: Multiple periodic solutions of differential delay equations created by asymptotically linear Hamiltonian systems. Nonlinear Anal. TMA 31, 45–54 (1998) · Zbl 0918.34066 · doi:10.1016/S0362-546X(96)00058-2
[22] Li J.B., He X.Z.: Proof and generalization of Kaplan-Yorke’s conjecture on periodic solution of differential delay equations. Sci. Chin. A 42, 957–964 (1999) · Zbl 0983.34061 · doi:10.1007/BF02880387
[23] Li J.B., He X.Z.: Periodic solutions of some differential delay equations created by Hamiltonian systems. Bull. Aust. Math. Soc. 60, 377–390 (1999) · Zbl 0946.34063 · doi:10.1017/S000497270003656X
[24] Llibre J., Tarta A.-A.: Periodic solutions of delay equations with three delays via bi-Hamiltonian systems. Nonlinear Anal. TMA 64, 2433–2441 (2006) · Zbl 1101.34055 · doi:10.1016/j.na.2005.08.023
[25] Mawhin J.: Periodic solutions of nonlinear functional differential equations. J. Differ. Equ. 10, 240–261 (1971) · Zbl 0223.34055 · doi:10.1016/0022-0396(71)90049-0
[26] Mallet-Paret J., Sell G.: Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions. J. Differ. Equ. 125, 385–440 (1996) · Zbl 0849.34055 · doi:10.1006/jdeq.1996.0036
[27] Mallet-Paret J., Sell G.: The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay. J. Differ. Equ. 125, 441–489 (1996) · Zbl 0849.34056 · doi:10.1006/jdeq.1996.0037
[28] Mawhin J.: Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector space. J. Differ. Equ. 12, 610–636 (1972) · Zbl 0244.47049 · doi:10.1016/0022-0396(72)90028-9
[29] Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems, vol. 74. Applied Mathematical Sciences. Springer-Verlag, Berlin (1989) · Zbl 0676.58017
[30] Nussbaum R.D.: Periodic solutions of some nonlinear autonomous functional differential equations II. J. Differ. Equ. 14, 360–394 (1973) · Zbl 0311.34087 · doi:10.1016/0022-0396(73)90053-3
[31] Nussbaum R.D.: Periodic solutions of some nonlinear autonomous functional differential equations. Ann. Math. Pura Appl. 10, 263–306 (1974) · Zbl 0323.34061 · doi:10.1007/BF02417109
[32] Nussbaum R.D.: A Hopf global bifurcation theorem for retarded functional differential equations. Trans. Am. Math. Soc. 238, 139–163 (1978) · Zbl 0389.34050 · doi:10.1090/S0002-9947-1978-0482913-0
[33] Nussbaum R.D.: Periodic solutions of special differential-delay equations: an example in non-linear functional analysis. Proc. R. Soc. Edinb. 81A, 131–151 (1978) · Zbl 0402.34061 · doi:10.1017/S0308210500010490
[34] Shu X.B., Xu Y.T., Huang L.H.: Infinite periodic solutions to a class of second-order Sturm-Liouville neutral differential equations. Nonlinear Anal. TMA 68, 905–911 (2008) · Zbl 1146.34047 · doi:10.1016/j.na.2006.11.046
[35] Szulkin A.: Cohomology and Morse theory for strongly indefinite functionals. Math. Z. 209, 375–418 (1992) · Zbl 0735.58012 · doi:10.1007/BF02570842
[36] Wen, L.Z.: The existence of periodic soltuions to a class of differential difference equation. Sci. Bull. 22, 1755 (1986) (in Chinese)
[37] Wen L.Z., Xia H.X.: Existence of periodic solutions for differential difference equations with two time lags. Scientia Sinica A 31, 777–786 (1988) · Zbl 0682.34048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.