×

Optimal low-order fully integrated solid-shell elements. (English) Zbl 1398.74393

Summary: This paper presents three optimal low-order fully integrated geometrically nonlinear solid-shell elements based on the enhanced assumed strain (EAS) method and the assumed natural strain method for different types of structural analyses, e.g. analysis of thin homogeneous isotropic and multilayer anisotropic composite shell-like structures and the analysis of (near) incompressible materials. The proposed solid-shell elements possess eight nodes with only displacement degrees of freedom and a few internal EAS parameters. Due to the 3D geometric description of the proposed elements, 3D constitutive laws can directly be employed in these formulations. The present formulations are based on the well-known Fraeijs de Veubeke-Hu-Washizu multifield variational principle. In terms of accuracy as well as efficiency point of view, the choice of the optimal EAS parameters plays a very critical role in the EAS method, therefore a systematic numerical study has been carried out to find out the optimal EAS parameters to alleviate different locking phenomena for the proposed solid-shell formulations. To assess the accuracy of the proposed solid-shell elements, a variety of popular numerical benchmark examples related to element convergence, mesh distortions, element aspect ratios and different locking phenomena are investigated and the results are compared with the well-known solid-shell formulations available in the literature. The results of our numerical assessment show that the proposed solid-shell formulations provide very accurate results, without showing any numerical problems, for a variety of geometrically linear and nonlinear structural problems.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
74K15 Membranes
74E30 Composite and mixture properties
74K20 Plates
Full Text: DOI

References:

[1] Reese S (2006) A large deformation solid-shell concept based on reduced integration with hourglass stabilization. Int J Numer Methods Eng 69: 1671–1716 · Zbl 1194.74469 · doi:10.1002/nme.1827
[2] Bischoff M, Ramm E (1997) Shear deformable shell elements for large strains and rotations. Int J Numer Methods Eng 40: 4427– 4449 · Zbl 0892.73054 · doi:10.1002/(SICI)1097-0207(19971215)40:23<4427::AID-NME268>3.0.CO;2-9
[3] de Sousa RJA, Cardoso RPR, Valente RAF, Yoon JW, Gracio JJ, Jorge RMN (2005) A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: part I–geometrically linear applications. Int J Numer Methods Eng 62: 952–977 · Zbl 1161.74487 · doi:10.1002/nme.1226
[4] de Sousa RJA, Cardoso RPR, Valente RAF, Yoon JW, Gracio JJ, Jorge RMN (2006) A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness–part II: nonlinear applications. Int J Numer Methods Eng 67: 160–188 · Zbl 1110.74840 · doi:10.1002/nme.1609
[5] Vu-Quoc L, Tan XG (2003) Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Comput Methods Appl Mech Eng 192: 975–1016 · Zbl 1091.74524 · doi:10.1016/S0045-7825(02)00435-8
[6] Vu-Quoc L, Tan XG (2003) Optimal solid shells for non-linear analyses of multilayer composites. II. Dynamics. Comput Methods Appl Mech Eng 192: 1017–1059 · Zbl 1091.74525 · doi:10.1016/S0045-7825(02)00336-5
[7] Betsch P, Gruttmann F, Stein E (1996) A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput Methods Appl Mech Eng 130: 57– 79 · Zbl 0861.73068 · doi:10.1016/0045-7825(95)00920-5
[8] Hauptmann R, Schweizerhof K (1998) A systematic development of ’solid-shell’ element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int J Numer Methods Eng 42: 49–69 · Zbl 0917.73067 · doi:10.1002/(SICI)1097-0207(19980515)42:1<49::AID-NME349>3.0.CO;2-2
[9] Miehe C (1998) A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains. Comput Methods Appl Mech Eng 155: 193–233 · Zbl 0970.74043 · doi:10.1016/S0045-7825(97)00149-7
[10] Schwarze M, Reese S (2009) A reduced integration solid-shell finite element based on the EAS and the ANS concept–geometrically linear problems. Int J Numer Methods Eng 80: 1322– 1355 · Zbl 1183.74315 · doi:10.1002/nme.2653
[11] Schwarze M, Reese S (2011) A reduced integration solid-shell finite element based on the EAS and the ANS concept–large deformation problems. Int J Numer Methods Eng 85: 289–329 · Zbl 1217.74135 · doi:10.1002/nme.2966
[12] Cardoso RPR, Jeong WY, Mahardika M, Choudry S, de Sousa RJA, Valente RAF (2007) Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements. Int J Numer Methods Eng 75: 156–187 · Zbl 1195.74165 · doi:10.1002/nme.2250
[13] Freischläger C, Schweizerhof K (1996) On a systematic development of trilinear three-dimensional solid elements based on Simo’s enhanced strain formulation. Int J Numer Methods Eng 33: 2993–3017 · Zbl 0929.74103
[14] Doll S, Schweizerhof K, Hauptmann R, Freischläger C (2000) On volumetric locking of low-order solid and solid-shell elements for finite elastoviscoplastic deformations and selective reduced integration. Eng Comput 1: 77–88 · Zbl 1012.74069
[15] Harnau M, Schweizerhof K (2002) About linear and quadratic ”solid-shell” elements at large deformations. Comput Struct 80: 805–817 · doi:10.1016/S0045-7949(02)00048-2
[16] Klinkel S, Gruttmann F, Wagner W (1999) A continuum based three-dimensional shell element for laminated structures. Comput Struct 71: 43–62 · doi:10.1016/S0045-7949(98)00222-3
[17] Klinkel S, Gruttmann F, Wagner W (2006) A robust non-linear solid shell element based on a mixed variational formulation. Comput Methods Appl Mech Eng 195: 179–201 · Zbl 1106.74058 · doi:10.1016/j.cma.2005.01.013
[18] Simo JC, Rifai MS (1990) A Class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29: 1595–1638 · Zbl 0724.73222 · doi:10.1002/nme.1620290802
[19] Andelfinger U, Ramm E (1993) EAS-elements for 2D, 3D, plate and shell structures and their equivalence to HR-elements. Int J Numer Methods Eng 36: 1311–1337 · Zbl 0772.73071 · doi:10.1002/nme.1620360805
[20] Klinkel S, Wagner W (1997) A geometrical non-linear brick element based on the EAS-method. Int J Numer Methods Eng 40: 4529–4545 · Zbl 0899.73539 · doi:10.1002/(SICI)1097-0207(19971230)40:24<4529::AID-NME271>3.0.CO;2-I
[21] Fraeijs de Veubeke BM (1951) Diffusion des inconnues hyperstatiques dans les voilures à à longeron couples. Bull. Serv. Technique de L’Aéronautique. Imprimeríe Marcel Hayez: Bruxelles 24: 56
[22] Hu HC (1955) On some variational principles in the theory of elasticity and plasticity. Sci Sin Beijing 4: 33–54 · Zbl 0066.17903
[23] Washizu K (1955) On some variational principles in the theory of elasticity and plasticity. Aeroelastic and Structures Research Laboratory, Massachusetts Institute of Technology. Technical Report 25-18
[24] Simo JC, Armero F (1992) Geometrically nonlinear enhanced-strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33: 1413–1449 · Zbl 0768.73082 · doi:10.1002/nme.1620330705
[25] Bathe KJ (1996) Finite element procedures. Prentice Hall, Englewood Cliffs
[26] Hughes TJR, Tezduyar TE (1981) Finite elements based upon Mindlin plate theory with particular reference to the four-node isoparametric element. J Appl Mech 48: 587–596 · Zbl 0459.73069
[27] Dvorkin EN, Bathe KJ (1984) Continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1: 77–88 · doi:10.1108/eb023562
[28] Militello C, Felippa CA (1990) A variational justification of the assumed natural strain formulation of finite elements–I. Variational principles. Comput Struct 34: 431–438 · Zbl 0721.73038 · doi:10.1016/0045-7949(90)90267-6
[29] Militello C, Felippa CA (1990) A variational justification of the assumed natural strain formulation of finite elements–II. The C{\(\deg\)} four-node plate element. Comput Struct 34: 439–444 · Zbl 0721.73039 · doi:10.1016/0045-7949(90)90268-7
[30] Betsch P, Stein E (1995) An assumed strain approach avoiding artificial thickness straining for a nonlinear 4-node shell element. Commun Numer Methods Eng 11: 899–909 · Zbl 0833.73051 · doi:10.1002/cnm.1640111104
[31] de Sousa RJA, Jorge RMN, Valente RAF, de Sa JMAC (2003) A new volumetric and shear locking-free 3D enhanced strain element. Eng Comput 20: 896–925 · Zbl 1063.74537 · doi:10.1108/02644400310502036
[32] MacNeal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elements Anal Des 1: 3–20 · doi:10.1016/0168-874X(85)90003-4
[33] Morley LSD (1963) Skew plates and structures. Pergamon Press, Oxford · Zbl 0124.17704
[34] Scordelis AC, Lo KS (1969) Computer analysis of cylindrical shells. J Am Concr Inst 61: 539–561
[35] Belytschko T, Leviathan I (1994) Physical stabilization of the 4-node shell element with one point quadrature. Comput Methods Appl Mech Eng 113: 321–350 · Zbl 0846.73058 · doi:10.1016/0045-7825(94)90052-3
[36] Stanley GM (1985) Continuum-based shell elements. PhD thesis, Stanford University Stanford, Stanford
[37] Parisch H (1995) A continuum-based shell theory for nonlinear applications. Int J Numer Methods Eng 38: 1855–1883 · Zbl 0826.73041 · doi:10.1002/nme.1620381105
[38] Valente RAF, de Sousa RJA, Jorge RMN (2004) An enhanced strain 3D element for large deformation elastoplastic problems in thin-shell applications. Comp Mech 34: 38–52 · Zbl 1141.74367 · doi:10.1007/s00466-004-0551-7
[39] Valente RAF, Jorge RMN, Cardoso RPR, de Sa JMAC, Grácio JJA (2003) On the use of an enhanced transverse shear strain shell element for problems involving large rotations. Comput Mech 30: 286–296 · Zbl 1090.74693 · doi:10.1007/s00466-002-0388-x
[40] Brank B, Peric D, Damjanic FB (1995) On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells. Comput Mech 16: 341–359 · Zbl 0848.73060 · doi:10.1007/BF00350723
[41] Whitney JM (1969) Bending-extensional coupling in laminated plates under transverse load. J Compos Mater 3: 20–28 · doi:10.1177/002199836900300102
[42] Spilker RL, Jakobs DM (1986) Hybrid stress reduced-Mindlin elements for thin multilayer plates. Int J Numer Methods Eng 23: 555–578 · Zbl 0584.73100 · doi:10.1002/nme.1620230404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.