×

Spectral asymptotics of one-dimensional fractal Laplacians in the absence of second-order identities. (English) Zbl 1396.28017

Summary: We observe that some self-similar measures defined by finite or infinite iterated function systems with overlaps are in certain sense essentially of finite type, which allows us to extract useful measure-theoretic properties of iterates of the measure. We develop a technique to obtain a closed formula for the spectral dimension of the Laplacian defined by a self-similar measure satisfying this condition. For Laplacians defined by fractal measures with overlaps, spectral dimension has been obtained earlier only for a small class of one-dimensional self-similar measures satisfying Strichartz second-order self-similar identities. The main technique we use relies on the vector-valued renewal theorem proved by K.-S. Lau et al. [Stud. Math. 117, No. 1, 1–28 (1995; Zbl 0839.43002)].

MSC:

28A80 Fractals
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35P20 Asymptotic distributions of eigenvalues in context of PDEs
43A05 Measures on groups and semigroups, etc.
47A75 Eigenvalue problems for linear operators

Citations:

Zbl 0839.43002
Full Text: DOI

References:

[1] P. Alonso-Ruiz; U. R. Freiberg, Weyl asymptotics for Hanoi attractors, Forum Math., 1003-1021 (2017) · Zbl 1373.28006
[2] E. Ayer; R. S. Strichartz, Exact Hausdorff measure and intervals of maximum density for Cantor sets, Trans. Amer. Math. Soc., 351, 3725-3741 (1999) · Zbl 0933.28003 · doi:10.1090/S0002-9947-99-01982-0
[3] R. Courant, Über die Schwinggungen eingespannter Platten, Math. Z., 15, 195-200 (1922) · JFM 48.0562.01 · doi:10.1007/BF01494393
[4] D. Croydon; B. Hambly, Self-similarity and spectral asymptotics for the continuum random tree, Stochastic Process. Appl., 118, 730-754 (2008) · Zbl 1143.60012 · doi:10.1016/j.spa.2007.06.005
[5] M. Das; S.-M. Ngai, Graph-directed iterated function systems with overlaps, Indiana Univ. Math. J., 53, 109-134 (2004) · Zbl 1065.28003 · doi:10.1512/iumj.2004.53.2342
[6] G. Deng; S.-M. Ngai, Differentiability of \(\begin{document} L^q\end{document} \)-spectrum and multifractal decomposition by using infinite graph-directed IFSs, Adv. Math., 311, 190-237 (2017) · Zbl 1459.28004 · doi:10.1016/j.aim.2017.02.021
[7] J. J. Duistermaat; V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 39-79 (1975) · Zbl 0307.35071 · doi:10.1007/BF01405172
[8] K. J. Falconer, Techniques in Fractal Geometry, Wiley, 1997. · Zbl 0869.28003
[9] U. Freiberg, Spectral asymptotics of generalized measure geometric Laplacians on Cantor like sets, Forum Math., 17, 87-104 (2005) · Zbl 1135.28302
[10] T. Fujita, A fractional dimension, self-similarity and a generalized diffusion operator, Probabilistic methods in mathematical physics (Katata/Kyoto, 1985), 83-90, Academic Press, Boston, MA, 1987. · Zbl 0652.60084
[11] B. M. Hambly, On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets, Probab. Theory Related Fields, 117, 221-247 (2000) · Zbl 0954.35121 · doi:10.1007/s004400050005
[12] B. M. Hambly; S. O. G. Nyberg, Finitely ramified graph-directed fractals, spectral asymptotics and the multidimensional renewal theorem, Proc. Edinb. Math. Soc., 46, 1-34 (2003) · Zbl 1038.35046
[13] J. Hu; K.-S. Lau; S.-M. Ngai, Laplace operators related to self-similar measures on \(\begin{document} \mathbb{R}^d\end{document} \), J. Funct. Anal., 239, 542-565 (2006) · Zbl 1109.47038 · doi:10.1016/j.jfa.2006.07.005
[14] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30, 713-747 (1981) · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[15] V. Ivrii, Second term of the spectral asymptotic expansion of a Laplace-Beltrami operator on manifolds with boundary, Funktsional. Anal. i Prilozhen, 14, 25-34 (1980) · Zbl 0435.35059
[16] N. Jin; S. S. T. Yau, General finite type IFS and \(\begin{document} M\end{document} \)-matrix, Comm. Anal. Geom., 13, 821-843 (2005) · Zbl 1101.28006 · doi:10.4310/CAG.2005.v13.n4.a8
[17] N. Kajino, Spectral asymptotics for Laplacians on self-similar sets, J. Funct. Anal., 258, 1310-1360 (2010) · Zbl 1232.31004 · doi:10.1016/j.jfa.2009.11.001
[18] N. Kajino, Log-periodic asymptotic expansion of the spectral partition function for self-similar sets, Comm. Math. Phys., 328, 1341-1370 (2014) · Zbl 1298.28018 · doi:10.1007/s00220-014-1922-3
[19] J. Kigami; M. L. Lapidus, Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals, Comm. Math. Phys., 158, 93-125 (1993) · Zbl 0806.35130 · doi:10.1007/BF02097233
[20] M. L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Trans. Amer. Math. Soc., 325, 465-529 (1991) · Zbl 0741.35048 · doi:10.1090/S0002-9947-1991-0994168-5
[21] K.-S. Lau; S.-M. Ngai, \( \begin{document} L^q\end{document} \)-spectrum of the Bernoulli convolution associated with the golden ratio, Studia Math., 131, 225-251 (1998) · Zbl 0929.28005
[22] K.-S. Lau; S.-M. Ngai, A generalized finite type condition for iterated function systems, Adv. Math., 208, 647-671 (2007) · Zbl 1113.28006 · doi:10.1016/j.aim.2006.03.007
[23] K.-S. Lau; X.-Y. Wang, Iterated function systems with a weak separation condition, Studia Math., 161, 249-268 (2004) · Zbl 1062.28009 · doi:10.4064/sm161-3-3
[24] K.-S. Lau; J. Wang; C.-H. Chu, Vector-valued Choquet-Deny theorem, renewal equation and self-similar measures, Studia Math., 117, 1-28 (1995) · Zbl 0839.43002 · doi:10.4064/sm-117-1-1-28
[25] B. M. Levitan, On a theorem of H. Weyl, Doklady Akad. Nauk SSSR (N.S.), 82, 673-676 (1952) · Zbl 0047.08306
[26] V. G. Maz’ja, Sobolev Spaces, Springer-Verlag, Berlin, 1985. · Zbl 0692.46023
[27] R. D. Mauldin; M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. (3), 73, 105-154 (1996) · Zbl 0852.28005
[28] R. D. Mauldin; S. C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc., 309, 811-829 (1988) · Zbl 0706.28007 · doi:10.1090/S0002-9947-1988-0961615-4
[29] H. P. McKean; D. B. Ray, Spectral distribution of a differential operator, Duke Math. J., 281-292 (1962) · Zbl 0114.04902 · doi:10.1215/S0012-7094-62-02928-9
[30] K. Naimark; M. Solomyak, The eigenvalue behaviour for the boundary value problems related to self-similar measures on \(\begin{document} \mathbb{R}^d\end{document} \), Math. Res. Lett., 2, 279-298 (1995) · Zbl 0836.60016 · doi:10.4310/MRL.1995.v2.n3.a5
[31] S.-M. Ngai, Spectral asymptotics of Laplacians associated with one-dimensional iterated function systems with overlaps, Canad. J. Math., 63, 648-688 (2011) · Zbl 1232.28012 · doi:10.4153/CJM-2011-011-3
[32] S.-M. Ngai; J.-X. Tong, Infinite iterated function systems with overlaps, Ergodic Theory Dynam. Systems, 36, 890-907 (2016) · Zbl 1355.37027 · doi:10.1017/etds.2014.86
[33] S.-M. Ngai; Y. Wang, Hausdorff dimension of self-similar sets with overlaps, J. London Math. Soc. (2), 63, 655-672 (2001) · Zbl 1013.28008 · doi:10.1017/S0024610701001946
[34] S. -M. Ngai and Y. Xie, \( \begin{document} L^q\end{document} \)-spectrum of self-similar measures with overlaps in the absence of second-order identities, J. Aust. Math. Soc. , to appear.
[35] Y. Peres, W. Schlag and B. Solomyak, Sixty years of Bernoulli convolutions, Fractal Geometry and Stochastics, Ⅱ, (Greifswald/Koserow, 1998), 39-65, Progr. Probab., 46, Birkhäuser, Basel, 2000. · Zbl 0961.42006
[36] A. Schief, Separation properties for self-similar sets, Proc. Amer. Math. Soc., 122, 111-115 (1994) · Zbl 0807.28005 · doi:10.1090/S0002-9939-1994-1191872-1
[37] R. Seeley, A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of \(\begin{document} \mathbb{R}^3\end{document} \), Adv. in Math., 244-269 (1978) · Zbl 0382.35043 · doi:10.1016/0001-8708(78)90013-0
[38] R. S. Strichartz; A. Taylor; T. Zhang, Densities of self-similar measures on the line, Experiment. Math., 4, 101-128 (1995) · Zbl 0860.28005 · doi:10.1080/10586458.1995.10504313
[39] T. Szarek; S. Wedrychowicz, The OSC does not imply the SOSC for infinite iterated function systems, Proc. Amer. Math. Soc., 133, 437-440 (2005) · Zbl 1051.28005 · doi:10.1090/S0002-9939-04-07708-1
[40] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71, 441-479 (1912) · JFM 43.0436.01 · doi:10.1007/BF01456804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.