×

Laplace operators related to self-similar measures on \(\mathbb R^{d}\). (English) Zbl 1109.47038

The authors study a Laplace-type operator \(\Delta_\mu\), the Dirichlet Laplacian with respect to \(\mu\), that extends the classical Laplacian for a bounded open subset \(\Omega\) of \(\mathbb R^d\) with \( d \geq 1\) and a positive finite Borel measure \(\mu\) supported on \(\overline \Omega\) with \(\mu (\Omega)>0\). In fact, they prove that the Sobolev space \(H_0^1 (\Omega)\) is compactly embedded in \(L^2 (\Omega, \mu)\), which leads to the existence of an orthonormal basis of \(L^2 (\Omega , \mu )\) consisting of eigenfunctions of \(\Delta_\mu\) under the condition \(\underline {\dim}_\infty (\mu) > d-2\), where \(\underline{\dim}_\infty (\mu)\) denotes the lower \(L^\infty\)-dimension of \(\mu\). Under the same conditions, they also show that the Green operator associated with \(\mu\) exists and is the inverse of \(-\Delta_\mu\). Using the multifractal \(L^q\)-spectrum of the measure, the authors investigate several equivalent conditions to \(\underline {\dim}_\infty (\mu) > d-2\) for an invariant measure, especially for self-similar measures \(\mu\) defined by iterated function systems (IFS) satisfying the open set condition(OSC). Finally, using the same multifractal spectrum, they scrutinize the condition \(\underline {\dim}_\infty (\mu) > d-2\) for the measure \(\mu\) defined by an IFS satisfying the weak separation condition* (WSC*) but not the OSC.

MSC:

47F05 General theory of partial differential operators
28A80 Fractals
28A75 Length, area, volume, other geometric measure theory
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35P05 General topics in linear spectral theory for PDEs
35R05 PDEs with low regular coefficients and/or low regular data
Full Text: DOI

References:

[1] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0186.19101
[2] Bass, R. F., Probabilistic Techniques in Analysis (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0817.60001
[3] Ben Amor, A.; Hansen, W., Continuity of eigenvalues for Schrödinger operators, \(L^p\)-properties of Kato type integral operators, Math. Ann., 321, 4, 925-953 (2001) · Zbl 1067.35053
[4] Bird, E. J.; Ngai, S.-M.; Teplyaev, A., Fractal Laplacians on the unit interval, Ann. Sci. Math. Québec, 27, 2, 135-168 (2003) · Zbl 1102.34066
[5] Cawley, R.; Mauldin, R. D., Multifractal decompositions of Moran fractals, Adv. Math., 92, 196-236 (1992) · Zbl 0763.58018
[6] Courant, R.; Hilbert, D., Methods of Mathematical Physics, vol. I (1953), Interscience: Interscience New York · Zbl 0729.00007
[7] Courant, R.; Hilbert, D., Methods of Mathematical Physics, vol. II, Partial Differential Equations (1989), Wiley: Wiley New York · Zbl 0729.35001
[8] Davies, E. B., Spectral Theory and Differential Operators, Cambridge Stud. Adv. Math., vol. 42 (1995), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0893.47004
[9] Q.R. Deng, X.G. He, K.S. Lau, Self-affine measures and vector-valued representations, preprint; Q.R. Deng, X.G. He, K.S. Lau, Self-affine measures and vector-valued representations, preprint · Zbl 1176.28013
[10] Doob, J. L., Classical Potential Theory and Its Probabilistic Counterpart (2001), Springer-Verlag: Springer-Verlag Berlin, Reprint of the 1984 edition · Zbl 0990.31001
[11] Falconer, K. J., Fractal Geometry. Mathematical Foundations and Applications (1990), Wiley: Wiley Chichester · Zbl 0689.28003
[12] Fan, A.-H.; Lau, K.-S.; Ngai, S.-M., Iterated function systems with overlaps, Asian J. Math., 4, 527-552 (2000) · Zbl 0984.37006
[13] Freiberg, U., Analytical properties of measure geometric Krein-Feller-operators on the real line, Math. Nachr., 260, 34-47 (2003) · Zbl 1055.28003
[14] Freiberg, U.; Zähle, M., Harmonic calculus on fractals—a measure geometric approach, I, Potential Anal., 16, 3, 265-277 (2002) · Zbl 1055.28002
[15] Hervé, R.-M., Quelques propriétés des sursolutions et sursolutions locales d’une équation uniformément elliptique de la forme \(L u = - \sum_i(\partial / \partial x_i)(\sum_j a_{i j} \partial u / \partial x_j) = 0\), Ann. Inst. Fourier (Grenoble), 16, 241-267 (1966) · Zbl 0142.08802
[16] Hervé, R.-M.; Hervé, M., Les fonctions surharmoniques associées à un opérateur elliptique du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 19, 305-359 (1968) · Zbl 0176.09801
[17] Hutchinson, J. E., Fractals and self-similarity, Indiana Univ. Math. J., 30, 713-747 (1981) · Zbl 0598.28011
[18] Lau, K.-S., Fractal measures and mean \(p\)-variations, J. Funct. Anal., 108, 427-457 (1992) · Zbl 0767.28007
[19] Lau, K.-S., Dimension of a family of singular Bernoulli convolutions, J. Funct. Anal., 116, 335-358 (1993) · Zbl 0788.60055
[20] Lau, K.-S.; Ngai, S.-M., \(L^q\)-spectrum of the Bernoulli convolution associated with the golden ratio, Studia Math., 131, 225-251 (1998) · Zbl 0929.28005
[21] Lau, K.-S.; Ngai, S.-M., Multifractal measures and a weak separation condition, Adv. Math., 141, 45-96 (1999) · Zbl 0929.28007
[22] Lau, K.-S.; Ngai, S.-M., \(L^q\)-spectrum of Bernoulli convolutions associated with P.V. numbers, Osaka J. Math., 36, 993-1010 (1999) · Zbl 0956.28010
[23] Lau, K.-S.; Ngai, S.-M., Second-order self-similar identities and multifractal decompositions, Indiana Univ. Math. J., 49, 925-972 (2000) · Zbl 0980.28004
[24] Lau, K.-S.; Wang, J., Mean quadratic variations and Fourier asymptotics of self-similar measures, Monatsh. Math., 115, 99-132 (1993) · Zbl 0778.28005
[25] Lau, K.-S.; Ngai, S.-M.; Rao, H., Iterated function systems with overlaps and self-similar measures, J. London Math. Soc. (2), 63, 99-116 (2001) · Zbl 1019.28005
[26] Lax, P., On the existence of Green’s function, Proc. Amer. Math. Soc., 3, 526-531 (1952) · Zbl 0047.09802
[27] Maz’ja, V. G., Sobolev Spaces (1985), Springer-Verlag: Springer-Verlag Berlin · Zbl 0692.46023
[28] Naimark, K.; Solomyak, M., On the eigenvalue behaviour for a class of operators related to self-similar measures on \(R^d\), C. R. Acad. Sci. Paris Sér. I Math., 319, 837-842 (1994) · Zbl 0808.60038
[29] Naimark, K.; Solomyak, M., The eigenvalue behaviour for the boundary value problems related to self-similar measures on \(R^d\), Math. Res. Lett., 2, 279-298 (1995) · Zbl 0836.60016
[30] Peres, Y.; Solomyak, B., Existence of \(L^q\) dimensions and entropy dimension for self-conformal measures, Indiana Univ. Math. J., 49, 4, 1603-1621 (2000) · Zbl 0978.28004
[31] Schief, A., Separation properties for self-similar sets, Proc. Amer. Math. Soc., 122, 111-115 (1994) · Zbl 0807.28005
[32] Solomyak, M.; Verbitsky, E., On a spectral problem related to self-similar measures, Bull. London Math. Soc., 27, 3, 242-248 (1995) · Zbl 0823.34071
[33] Strichartz, R. S., Self-similar measures and their Fourier transforms III, Indiana Univ. Math. J., 42, 367-411 (1993) · Zbl 0790.28003
[34] Triebel, H., Theory of Function Spaces III (2006), Birkhäuser: Birkhäuser Basel · Zbl 1104.46001
[35] Triebel, H.; Yang, D., Spectral theory of Riesz potentials on quasi-metric spaces, Math. Nachr., 238, 160-184 (2002) · Zbl 1001.43006
[36] Yosida, K., Functional Analysis (1980), Springer-Verlag: Springer-Verlag Berlin · Zbl 0152.32102
[37] Zähle, M., Harmonic calculus on fractals—A measure geometric approach, II, Trans. Amer. Math. Soc., 357, 3407-3423 (2005) · Zbl 1071.28008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.