×

Estimates for the topological degree and related topics. (English) Zbl 1321.46037

Summary: This is a survey paper on estimates for the topological degree and related topics which range from the characterizations of Sobolev spaces and BV functions to the Jacobian determinant and nonlocal filter problems in Image Processing. These results are obtained jointly with Bourgain and Brezis. Several open questions are mentioned.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
55M25 Degree, winding number
49J99 Existence theories in calculus of variations and optimal control
46B50 Compactness in Banach (or normed) spaces
26B10 Implicit function theorems, Jacobians, transformations with several variables
47H11 Degree theory for nonlinear operators
46-02 Research exposition (monographs, survey articles) pertaining to functional analysis

References:

[1] Adams R. A.: Sobolev Spaces Pure and Applied Mathematics 65. Academic Press, New York (1975) · Zbl 0314.46030
[2] Alberti G., Baldo S., Orlandi G.: Functions with prescribed singularities. J. Eur. Math. Soc. (JEMS) 5, 275-311 (2003) · Zbl 1033.46028 · doi:10.1007/s10097-003-0053-5
[3] L. Ambrosio, Metric space valued functions of bounded variation. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 493-478. · Zbl 0724.49027
[4] Ball J.M.: conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337-403 (1977) · Zbl 0368.73040 · doi:10.1007/BF00279992
[5] Ball J.M., Murat F.: and variational problems for multiple integrals. J. Funct. Anal. 58, 225-253 (1984) · Zbl 0549.46019 · doi:10.1016/0022-1236(84)90041-7
[6] Bethuel F.A: of maps in \[H1(B3, {\mathbb{S}^2}\] S2) which can be approximated by smooth maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 269-286 (1990) · Zbl 0708.58004
[7] Bethuel F.: approximation problem for Sobolev maps between two manifolds. Acta Math. 167, 153-206 (1991) · Zbl 0756.46017 · doi:10.1007/BF02392449
[8] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices. Progr. Nonlinear Differential Equations Appl. 13, Birkhäuser Boston, Boston, MA, 1994. · Zbl 0708.58004
[9] F. Bethuel and D. Chiron, Some questions related to the lifting problem in Sobolev spaces. In: Perspectives in Nonlinear Partial Differential Equations, Contemp. Math. 446, Amer. Math. Soc., Providence, RI, 2007, 125-152. · Zbl 1201.46029
[10] Bethuel F., Demengel F.: Extensions for Sobolev mappings between manifolds. Calc. Var. Partial Differential Equations 3, 475-491 (1995) · Zbl 0846.46021 · doi:10.1007/BF01187897
[11] Bethuel F., Zheng X.M.: Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80, 60-75 (1988) · Zbl 0657.46027 · doi:10.1016/0022-1236(88)90065-1
[12] Bojarski B., Ihnatsyeva L., Kinnunen J.: to recognize polynomials in higher order Sobolev spaces. Math. Scand. 112, 161-181 (2013) · Zbl 1283.46025
[13] Bourgain J., Brezis H.: On the equation div Y = f and application to control of phases. J. Amer. Math. Soc. 16, 393-426 (2003) · Zbl 1075.35006 · doi:10.1090/S0894-0347-02-00411-3
[14] J. Bourgain, H. Brezis and P. Mironescu, Complements to the paper: “Lifting, Degree, and Distributional Jacobian Revisited”. Unpublished manuscript. · Zbl 1077.46023
[15] J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces. In: Optimal Control and Partial Differential Equations (J. L. Menaldi, E. Rofman, and A. Sulem, eds.), a volume in honour of A. Bensoussan’s 60th birthday, IOS Press, Amsterdam, 2001, 439-455. · Zbl 1103.46310
[16] Bourgain J., Brezis H., Mironescu P.: H1/2 maps with values into the circle: Minimal connections, lifting, and the Ginzburg-Landau equation. Publ. Math. Inst. Hautes études Sci. 99, 1-115 (2004) · Zbl 1051.49030 · doi:10.1007/s10240-004-0019-5
[17] BourgainJ. Brezis H., Mironescu P.: Lifting, degree, and distributional Jacobian revisited. Comm. Pure Appl. Math. 58, 529-551 (2005) · Zbl 1077.46023 · doi:10.1002/cpa.20063
[18] Bourgain J., Brezis H., Nguyen H.-M.: A new estimate for the topological degree. C. R. Math. Acad. Sci. Paris 340, 787-791 (2005) · Zbl 1071.55002 · doi:10.1016/j.crma.2005.04.007
[19] Bourgain J., Kahane J.-P.: Sur les séries de Fourier des fonctions continues unimodulaires. Ann. Inst. Fourier (Grenoble) 60, 1201-1214 (2010) · Zbl 1196.42004 · doi:10.5802/aif.2551
[20] Bourgain J., Kozma G.: One cannot hear the winding number. J. Eur. Math. Soc. (JEMS) 9, 637-658 (2007) · Zbl 1134.42301 · doi:10.4171/JEMS/91
[21] Bourgain J., Nguyen H.-M.: A new characterization of Sobolev spaces. C. R. Math. Acad. Sci. Paris 343, 75-80 (2006) · Zbl 1109.46034 · doi:10.1016/j.crma.2006.05.021
[22] Bousquet P.: Topological singularities in Ws,p(SN, S1). J. Anal. Math. 102, 311-346 (2007) · Zbl 1158.58018 · doi:10.1007/s11854-007-0023-z
[23] H. Brezis, Analyse Fonctionnelle. Théorie et Applications. Mathématiques appliquées pour la maîtrise, Dunod, Paris, 2002. · Zbl 1059.81184
[24] H. Brezis, How to recognize constant functions. A connections with Sobolev spaces. Uspekhi Mat. Nauk 57 (2002), 59-74; English transl.: Russian Math. Surveys 57 (2002), 693-708. · Zbl 1072.46020
[25] H. Brezis, New questions related to the topological degree. In: The Unity of Mathematics, Progr. Math. 244, Birkhäuser Boston, Boston, MA, 2006, 137- 154. · Zbl 1109.58017
[26] H. Brezis, private communication. · Zbl 1196.42004
[27] Brezis H., Coron J.-M., Lieb E. H.: Harmonic maps with defects. Comm. Math. Phys. 107, 649-705 (1986) · Zbl 0608.58016 · doi:10.1007/BF01205490
[28] Brezis H., Fusco N., Sbordone C.: Integrability for the Jacobian of orientation preserving mappings. J. Funct. Anal 115, 425-431 (1993) · Zbl 0847.26012 · doi:10.1006/jfan.1993.1098
[29] Brezis H., Li Y., Mironescu P., Nirenberg L.: Degree and Sobolev spaces. Topol. Methods Nonlinear Anal. 13, 181-190 (1999) · Zbl 0956.46024
[30] H. Brezis, P. Mironescu and A. Ponce, W1,1-maps with values intoS1. In: Geometric Analysis of PDE and Several Complex Variables, Contemp. Math. 368, Amer. Math. Soc., Providence, RI, 2005, 69-100. · Zbl 1078.46020
[31] Brezis H., Nguyen H.-M.: On a new class of functions related to VMO. C. R. Math. Acad. Sci. Paris 349, 157-160 (2011) · Zbl 1223.46027 · doi:10.1016/j.crma.2010.11.026
[32] H. Brezis and H.-M. Nguyen, On the distributional Jacobian of maps from \[{\mathbb{S}^N}\] SNinto \[{\mathbb{S}^N}\] SNin fractional Sobolev and Hölder spaces. Ann. of Math. (2) 173 (2011), 1141-1183. · Zbl 1252.58005
[33] Brezis H., Nguyen H.-M.: The Jacobian determinant revisited. Invent. Math. 185, 17-54 (2011) · Zbl 1230.46029 · doi:10.1007/s00222-010-0300-9
[34] H. Brezis and H.-M. Nguyen, Non-local functionals related to the total variation and applications in Image Processing. Preprint, 2014. · Zbl 1033.49047
[35] Brezis H., Nirenberg L.: Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.) 1, 197-263 (1995) · Zbl 0852.58010 · doi:10.1007/BF01671566
[36] Buades A., Coll B., Morel J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4, 490-530 (2005) · Zbl 1108.94004 · doi:10.1137/040616024
[37] Chiron D.: On the definition of Sobolev and BV spaces into into singular spaces and the trace problem, Commun. Contemp. Math. 9, 473-513 (2007) · Zbl 1221.46031 · doi:10.1142/S0219199707002502
[38] R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9) 72 (1993) 247-286 · Zbl 0864.42009
[39] Dacorogna B., Murat F.: On the optimality of certain Sobolev exponents for the weak continuity of determinants. J. Funct. Anal. 105, 42-62 (1992) · Zbl 0769.46025 · doi:10.1016/0022-1236(92)90071-P
[40] Dávila J.: On an open question about functions of bounded variation. Calc. Var. Partial Differential Equations 15, 519-527 (2002) · Zbl 1047.46025 · doi:10.1007/s005260100135
[41] M. Esteban and S. Müller, Sobolev maps with integer degree and applications to Skyrme’s problem. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 436 (1992), 197-201. · Zbl 0757.49010
[42] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions. Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992. · Zbl 0804.28001
[43] I. Fonseca, N. Fusco and P. Marcellini, Topological degree, Jacobian determinants and relaxation. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 8 (2005), 187-250. · Zbl 1177.49066
[44] FonsecaI. Leoni G., Malý J.: continuity and lower semicontinuity results for determinants. Arch. Ration. Mech. Anal. 178, 411-448 (2005) · Zbl 1081.49013 · doi:10.1007/s00205-005-0377-2
[45] GiaquintaM. Modica G., Souček J.: Remarks on the degree theory. J. Funct. Anal. 125, 172-200 (1994) · Zbl 0822.55003 · doi:10.1006/jfan.1994.1121
[46] P. Hajłasz and P. Koskela, Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000), 1-101. · Zbl 0954.46022
[47] Hang F., Lin F.: A remark on the Jacobians. Commun. Contemp. Math. 2, 35-46 (2000) · Zbl 1033.49047
[48] Hang F., Lin F.: Topology of Sobolev mappings. II. Acta Math 191, 55-107 (2003) · Zbl 1061.46032 · doi:10.1007/BF02392696
[49] R. Ignat, On an open problem about how to recognize constant functions. Houston J. Math. 31 (2005), 285-304. · Zbl 1082.46022
[50] R. Ignat, The space BV(S2, S1): Minimal connection and optimal lifting. Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 283-302. · Zbl 1083.49030
[51] T. Iwaniec, Null Lagrangians, the art of integration by parts. In: The Interaction of Analysis and Geometry, Contemp.Math. 424, Amer.Math. Soc., Providence, RI, 2007, 83-102. · Zbl 1146.49018
[52] Iwaniec T., Sbordone C.: On the integrability of the Jacobian under minimal hypotheses. Arch. Ration. Mech. Anal. 119, 129-143 (1992) · Zbl 0766.46016 · doi:10.1007/BF00375119
[53] Jerrard R., Soner H.: Functions of bounded higher variation. Indiana Univ. Math. J. 51, 645-677 (2002) · Zbl 1057.49036 · doi:10.1512/iumj.2002.51.2229
[54] F. John and L. Nirenberg, On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961), 415-426. · Zbl 0102.04302
[55] N. Korevaar and R. Schoen, Sobolev spaces and harmonic maps for metric space targets. Comm. Anal. Geom. 1 (1993), 561-659. · Zbl 0862.58004
[56] G. Leoni and D. Spector, Characterization of Sobolev and BV spaces. J. Funct. Anal. 261 (2011), 2926-2958; Corrigendum: J. Funct. Anal. 266 (2014), 1106- 1114. · Zbl 1236.46032
[57] Lin F., Yang Y.: Existence of two-dimensional skyrmions via the concentration- compactness method. Comm. Pure Appl. Math. 57, 1332-1351 (2004) · Zbl 1059.81184 · doi:10.1002/cpa.20038
[58] V. G. Maz’ya, Sobolev Spaces. Springer-Verlag, Berlin, 1985. · Zbl 0692.46023
[59] Millot V.: Energy with weight for S2-valued maps with prescribed singularities. Calc. Var. Partial Differential Equations 24, 83-109 (2005) · Zbl 1115.49013 · doi:10.1007/s00526-004-0315-4
[60] P. Mironescu, Sobolev maps on manifolds: Degree, approximation, lifting. In: Perspectives in Nonlinear Partial Differential Equations, Contemp. Math. 446, Amer. Math. Soc., Providence, RI, 2007, 413-436. · Zbl 1201.46032
[61] P. Mironescu,Lifting default for \[{\mathbb{S}^1}\] S1-valued maps. C. R. Math. Acad. Sci. Paris 346 (2008), 1039-1044. · Zbl 1168.46305
[62] Mironescu P.: Decomposition of \[{mathbb{S}^1}\] S1-valued maps in Sobolev spaces. C. R. Math. Acad. Sci. Paris 348, 743-746 (2010) · Zbl 1205.46017 · doi:10.1016/j.crma.2010.06.020
[63] P. Mironescu, Le déterminant jacobien d’après Brezis et Nguyen. Séminaire Bourbaki: Vol. 2010/2011. Exposés 1027-1042, Astérisque, No. 348 (2012), 405-424. · Zbl 1277.46018
[64] C. B. Morrey, Jr., Multiple Integrals in the Calculus of Variations. Grundlehren Math. Wiss. 130, Springer-Verlag, New York, 1966. · Zbl 0142.38701
[65] S. Müller, Higher integrability of determinants and weak convergence inL1. J. Reine Angew. Math.412 (1990), 20-34. · Zbl 0713.49004
[66] S. Müller, Det = det. A remark on the distributional determinant. C. R. Math. Acad. Sci. Paris 311 (1990), 13-17. · Zbl 0717.46033
[67] Müller S.: On the singular support of the distributional determinant. Ann. Inst. H. Poincaré Anal. Non Linéaire 10, 657-696 (1993) · Zbl 0792.46027
[68] Nguyen H.-M.: Some new characterizations of Sobolev spaces. J. Funct. Anal. 237, 689-720 (2006) · Zbl 1109.46040 · doi:10.1016/j.jfa.2006.04.001
[69] H.-M. Nguyen, Г-convergence and Sobolev norms. C. R. Math. Acad. Sci. Paris 345 (2007), 679-684. · Zbl 1132.46026
[70] H.-M. Nguyen, Optimal constant in a new estimate for the degree. J. Anal. Math. 101 (2007), 367-395. · Zbl 1147.47046
[71] H.-M. Nguyen, Further characterizations of Sobolev spaces. J. Eur. Math. Soc. (JEMS) 10 (2008), 191-229. · Zbl 1228.46033
[72] H.-M. Nguyen, Inequalities related to liftings and applications. C. R. Math. Acad. Sci. Paris 346 (2008), 957-962. · Zbl 1157.46016
[73] Nguyen H.-M.: Sobolev norms, and BV functions. Duke Math. J. 157, 95-533 (2011) · Zbl 1221.28011 · doi:10.1215/00127094-1272921
[74] Nguyen H.-M.: Some inequalities related to Sobolev norms. Calc. Var. Partial Differential Equations 41, 483-509 (2011) · Zbl 1226.46030 · doi:10.1007/s00526-010-0373-8
[75] Ponce A.: A new approach to Sobolev spaces and connections to Г-convergence. Calc. Var. Partial Differential Equations 19, 229-255 (2004) · Zbl 1352.46037 · doi:10.1007/s00526-003-0195-z
[76] Ponce A.: An estimate in the spirit of Poincaré’s inequality. J. Eur. Math. Soc. (JEMS) 6, 1-15 (2004) · Zbl 1051.46019 · doi:10.4171/JEMS/1
[77] A. Ponce and J. Van Schaftingen, Closure of smooth maps inW1,p(B3; S2). Differential Integral Equations 22 (2009), 881-900. · Zbl 1240.46063
[78] Yu. G. Reshetnyak, Sobolev-type classes of functions with values in a metric space. Sib. Math. J. 38 (1997), 567-583. · Zbl 0944.46024
[79] Yu. G. Reshetnyak, The weak convergence of completely additive vector-valued set functions. Sibirsk. Mat. Zh.9 (1968), 1386-1394. · Zbl 0169.18301
[80] Yu. G. Reshetnyak, Space Mappings with Bounded Distortion. Transl. Math. Monogr. 73, Amer. Math. Soc., Providence, RI, 1989. · Zbl 0667.30018
[81] V. M. Gol’dshteĭn and Yu. G. Reshetnyak, Quasiconformal Mappings and Sobolev Spaces. Mathematics and Its Applications (Soviet Series) 54, Kluwer Academic Publishers Group, Dordrecht, 1990. · Zbl 1230.46029
[82] Rivière T.: Dense subsets of H1/2(S2, S1). Ann. Global Anal. Geom. 18, 517-528 (2000) · Zbl 0960.35022 · doi:10.1023/A:1006655723537
[83] Rudin L. I., Osher S., Fatemi E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259-268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[84] KindermannS. Osher S., Jones P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4, 1091-1115 (2005) · Zbl 1161.68827 · doi:10.1137/050622249
[85] W. Sickel and A. Youssfi, The characterization of the regularity of the Jacobian determinant in the framework of Bessel potential spaces on domains. J. Lond. Math. Soc. (2) 60 (1999), 561-580. · Zbl 0957.46028
[86] W. Sickel and A. Youssfi, The characterization of the regularity of the Jacobian determinant in the framework of potential spaces. J. Lond. Math. Soc. (2) 59 (1999), 287-310. · Zbl 0923.42016
[87] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series 43, Princeton University Press, Princeton, NJ, 1993. · Zbl 0821.42001
[88] L. P. Yaroslavsky, Digital Picture Processing. An introduction. Springer Series in Information Sciences 9, Springer-Verlag, Berlin, 1985. · Zbl 0585.94001
[89] L. P. Yaroslavsky and M. Eden, Fundamentals of Digital Optics. Birkhäuser Boston, Boston, MA, 1996. · Zbl 0877.94006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.