×

Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by \(d\)-sets. (English) Zbl 1416.35095

Summary: In the framework of the Laplacian transport, described by a Robin boundary value problem in an exterior domain in \(\mathbb{R}^n\), we generalize the definition of the Poincaré-Steklov operator to \(d\)-set boundaries, \(n-2< d<n\), and give its spectral properties to compare to the spectra of the interior domain and also of a truncated domain, considered as an approximation of the exterior case. The well-posedness of the Robin boundary value problems for the truncated and exterior domains is given in the general framework of \(n\)-sets. The results are obtained thanks to a generalization of the continuity and compactness properties of the trace and extension operators in Sobolev, Lebesgue and Besov spaces, in particular, by a generalization of the classical Rellich-Kondrachov Theorem of compact embeddings for \(n\) and \(d\)-sets.

MSC:

35J25 Boundary value problems for second-order elliptic equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47A10 Spectrum, resolvent

References:

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. · Zbl 0314.46030
[2] G. Allaire, Analyse Numérique et Optimisation, École Polytechnique, 2012.
[3] W. Arendt; A. F. M. T. Elst, Sectorial forms and degenerate differential operators, J. Operator Theory, 67, 33-72 (2012) · Zbl 1243.47009
[4] W. Arendt; R. Mazzeo, Spectral properties of the Dirichlet-to-Neumann operator on Lipschitz domains, Ulmer Seminare, 12, 28-38 (2007)
[5] W. Arendt; R. Mazzeo, Friedlander’s eigenvalue inequalities and the Dirichlet-to-Neumann semigroup, Commun. Pure Appl. Anal., 11, 2201-2212 (2012) · Zbl 1267.35139 · doi:10.3934/cpaa.2012.11.2201
[6] W. Arendt; A. ter Elst, The Dirichlet-to-Neumann operator on rough domains, J. Differential Equations, 251, 2100-2124 (2011) · Zbl 1241.47036 · doi:10.1016/j.jde.2011.06.017
[7] W. Arendt; A. F. M. ter Elst, The Dirichlet-to-Neumann operator on exterior domains, Potential Anal., 43, 313-340 (2015) · Zbl 1331.46022 · doi:10.1007/s11118-015-9473-6
[8] L. Banjai, Eigenfrequencies of fractal drums, J. of Comp. and Appl. Math., 198, 1-18 (2007) · Zbl 1103.65111 · doi:10.1016/j.cam.2005.11.015
[9] J. Behrndt; A. ter Elst, Dirichlet-to-Neumann maps on bounded Lipschitz domains, J. Differential Equations, 259, 5903-5926 (2015) · Zbl 1344.35032 · doi:10.1016/j.jde.2015.07.012
[10] M. Bodin, Characterisations of Function Spaces on Fractals, Ph. D thesis, Ume \(\begin{document} \mathbb{R} aa\end{document}\) University, 2005. · Zbl 1168.46017
[11] C. Bardos; D. Grebenkov; A. Rozanova-Pierrat, Short-time heat diffusion in compact domains with discontinuous transmission boundary conditions, Math. Models Methods Appl. Sci., 26, 59-110 (2016) · Zbl 1401.35303 · doi:10.1142/S0218202516500032
[12] L. P. Bos; P. D. Milman, Sobolev-Gagliardo-Nirenberg and Markov type inequalities on subanalytic domains, Geom. Funct. Anal., 5, 853-923 (1995) · Zbl 0848.46022 · doi:10.1007/BF01902214
[13] A.-P. Calderon, Lebesgue spaces of differentiable functions and distributions, Proc. Symp. Pure Math., 4, 33-49 (1961) · Zbl 0195.41103
[14] R. Capitanelli, Mixed Dirichlet-Robin problems in irregular domains, Comm. to SIMAI Congress, 2 (2007)
[15] R. Capitanelli, Asymptotics for mixed Dirichlet-Robin problems in irregular domains, J. Math. Anal. Appl., 362, 450-459 (2010) · Zbl 1179.35106 · doi:10.1016/j.jmaa.2009.09.042
[16] L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998. · Zbl 0902.35002
[17] M. Filoche; D. S. Grebenkov, The toposcopy, a new tool to probe the geometry of an irregular interface by measuring its transfer impedance, Europhys. Lett., 81, 40008 (2008) · doi:10.1209/0295-5075/81/40008
[18] A. Girouard; R. S. Laugesen; B. A. Siudeja, Steklov eigenvalues and quasiconformal maps of simply connected planar domains, Arch. Ration. Mech. Anal., 219, 903-936 (2016) · Zbl 1333.35274 · doi:10.1007/s00205-015-0912-8
[19] A. Girouard; L. Parnovski; I. Polterovich; D. A. Sher, The Steklov spectrum of surfaces: asymptotics and invariants, Math. Proc. Cambridge Philos. Soc., 157, 379-389 (2014) · Zbl 1317.58032 · doi:10.1017/S030500411400036X
[20] A. Girouard and I. Polterovich, Spectral geometry of the Steklov problem, Shape Optimization and Spectral Theory, 120C148, De Gruyter Open, Warsaw, 2017., arXiv: 1411.6567. · Zbl 1375.49056
[21] D. S. Grebenkov, Transport Laplacien Aux Interfaces Irregulires: Étude Théorique, Numérique et Expérimentale, Ph. D thesis, Ecole Polytechnique, 2004.
[22] D. S. Grebenkov, M. Filoche and B. Sapoval, Mathematical basis for a general theory of Laplacian transport towards irregular interfaces, Phys. Rev. E, 73(2006), 021103, 9pp. · Zbl 1144.82314
[23] D. S. Grebenkov; M. Filoche; B. Sapoval, A simplified analytical model for Laplacian transfer across deterministic prefractal interfaces, Fractals, 15, 27-39 (2007) · Zbl 1144.82314 · doi:10.1142/S0218348X0700340X
[24] P. Hajlasz; P. Koskela; H. Tuominen, Sobolev embeddings, extensions and measure density condition, Journal of Functional Analysis, 254, 1217-1234 (2008) · Zbl 1136.46029 · doi:10.1016/j.jfa.2007.11.020
[25] D. A. Herron; P. Koskela, Uniform, Sobolev extension and quasiconformal circle domains, J. Anal. Math., 57, 172-202 (1991) · Zbl 0776.30014 · doi:10.1007/BF03041069
[26] L. Ihnatsyeva and A. V. Vähäkangas, Characterization of traces of smooth functions on Ahlfors regular sets, J. Funct. Anal., 265 (2013), 1870-1915, arXiv: 1109.2248v1. · Zbl 1293.46022
[27] P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Mathematica, 147, 71-88 (1981) · Zbl 0489.30017 · doi:10.1007/BF02392869
[28] A. Jonsson; P. Sjögren; H. Wallin, Hardy and Lipschitz spaces on subsets of \(\begin{document} \mathbb{R}^n\end{document} \), Studia Math., 80, 141-166 (1984) · Zbl 0513.42020 · doi:10.4064/sm-80-2-141-166
[29] A. Jonsson and H. Wallin, Function spaces on subsets of \(\begin{document} \mathbb{R}^n\end{document} \), Math. Rep., 2(1984), xiv+221 pp. · Zbl 0875.46003
[30] A. Jonsson; H. Wallin, The dual of Besov spaces on fractals, Studia Mathematica, 112, 285-300 (1995) · Zbl 0831.46029 · doi:10.4064/sm-112-3-285-300
[31] A. Jonsson; H. Wallin, Boundary value problems and brownian motion on fractals, Chaos, Solitons & Fractals, 8, 191-205 (1997) · Zbl 0919.35038 · doi:10.1016/S0960-0779(96)00048-3
[32] M. R. Lancia, A transmission problem with a fractal interface, Zeitschrift für Analysis und ihre Anwendungen, 21, 113-133 (2002) · Zbl 1136.31310 · doi:10.4171/ZAA/1067
[33] J. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, Berlin: Springer-Verlag, 1972. · Zbl 0223.35039
[34] G. Lu; B. Ou, A Poincaré inequality on \(\begin{document} \mathbb{R}^n\end{document}\) and its application to potential fluid flows in space, Comm. Appl. Nonlinear Anal, 12, 1-24 (2005) · Zbl 1060.26017
[35] J. Marschall, The trace of Sobolev-Slobodeckij spaces on Lipschitz domains, Manuscripta Math, 58, 47-65 (1987) · Zbl 0605.46024 · doi:10.1007/BF01169082
[36] M. Martin and M. Putinar, Lectures on Hyponormal Operators, Vol. 39, Birkhauser, Basel, 1989. · Zbl 0684.47018
[37] O. Martio; J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math., 4, 383-401 (1979) · Zbl 0406.30013 · doi:10.5186/aasfm.1978-79.0413
[38] V. N. Maslennikova, Partial Differential Equations, (in Russian) Moscow, Peoples Freindship University of Russia, 1997.
[39] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000. · Zbl 0948.35001
[40] J. P. Pinasco; J. D. Rossi, Asymptotics of the spectral function for the Steklov problem in a family of sets with fractal boundaries, Appl. Maths. E-Notes, 5, 138-146 (2005) · Zbl 1061.35066
[41] P. Shvartsman, On the boundary values of Sobolev \(\begin{document} W^1_p\end{document} \)-functions, Adv. in Maths., 225, 2162-2221 (2010) · Zbl 1218.46020 · doi:10.1016/j.aim.2010.03.031
[42] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. · Zbl 0207.13501
[43] M. Taylor, Partial Differential Equations II, Appl. Math. Sci., Vol. 116, Springer-Verlag, New-York, 1996. · Zbl 0869.35003
[44] H. Triebel, Fractals and Spectra. Related to Fourier Analysis and Function Spaces, Birkhäuser, 1997. · Zbl 0898.46030
[45] H. Wallin, The trace to the boundary of Sobolev spaces on a snowflake, Manuscripta Math, 73, 117-125 (1991) · Zbl 0793.46015 · doi:10.1007/BF02567633
[46] P. Wingren, Lipschitz spaces and interpolating polynomials on subsets of euclidean space, Function Spaces and Applications, Springer Science + Business Media, 1302 (1988), 424-435. · Zbl 0645.46036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.