×

On a geometric method for the identifiability of forms. (English) Zbl 1440.14240

The author introduce a new criterion to test if uniqueness holds for the additive decomposition of degree \(d\) forms in \(m\) variables (here mainly \(d=3\)) as a sum of \(d\)-powers of linear forms with the minimal number of addenda (up to a permutation of the addenda). It need a solution, i.e. a decomposition with say \(a\) terms. The decomposition corresponds to the union \(A\) of \(a\) points of an \((m-1)\)-dimensional projectvive space.The criterion is essentially to test the Terracini’s tangent space at these points. It is effective and it is possible to use it in some cases not covered by the reshaped Kruskal’s criterion. As a sample he proved that for any \(n\in \mathbb {N}\) if \(m=3\), \(d=2n+8\), \(a\le 3n+11\) and the Terracini’s space at \(A\) has the expscted dimension \(3a-1\), then uniqueness holds. A related quoted paper is now appeared: [E. Angelini et al., Mediter. J. Math. 16, No. 4, Paper No. 97, 14p. (2019; Zbl 1420.14099)].

MSC:

14N07 Secant varieties, tensor rank, varieties of sums of powers
15A69 Multilinear algebra, tensor calculus

Citations:

Zbl 1420.14099

References:

[1] Chiantini, L.; Ottaviani, G.; Vannieuwenhoven, N., An algorithm for generic and low-rank specific identifiability of complex tensors, SIAM J. Matrix Anal. Appl., 35, 1265-1287 (2014) · Zbl 1322.14022 · doi:10.1137/140961389
[2] Kruskal, Jb, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra Appl., 18, 95-138 (1977) · Zbl 0364.15021 · doi:10.1016/0024-3795(77)90069-6
[3] Allman, Es; Matias, C.; Rhodes, Ja, Identifiability of parameters in latent structure models with many observed variables, Ann. Stat., 37, 3099-3132 (2009) · Zbl 1191.62003 · doi:10.1214/09-AOS689
[4] Anandkumar, A.; Ge, R.; Hsu, D.; Kakade, Sm; Telgarsky, M., Tensor decompositions for learning latent variable models, J. Mach. Learn. Res., 15, 2773-2832 (2014) · Zbl 1319.62109
[5] Appellof, Cj; Davidson, Er, Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents, Anal. Chem., 53, 2053-2056 (1981) · doi:10.1021/ac00236a025
[6] Rao, W.; Li, D.; Zhang, Jq, A tensor-based approach to L-shaped arrays processing with enhanced degrees of freedom, IEEE Signal Proc. Lett., 25, 1-5 (2018) · doi:10.1109/LSP.2017.2783370
[7] Terracini, A., Sulle \(V_k\) per cui la varietà degli \(S_h\) (h+1)-seganti ha dimensione minore dell’ordinario, Rend. Circolo Mat. Palermo, 31, 392-396 (1911) · JFM 42.0673.02 · doi:10.1007/BF03018812
[8] Angelini, E.; Chiantini, L.; Vannieuwenhoven, N., Identifiability beyond Kruskal’s bound for symmetric tensors of degree 4, Rend. Lincei Mat. Appl., 29, 465-485 (2018) · Zbl 1400.14112
[9] Ballico, E.; Chiantini, L., A criterion for detecting the identifiability of symmetric tensors of size three, Differ. Geom. Appl., 30, 233-237 (2012) · Zbl 1242.14051 · doi:10.1016/j.difgeo.2012.04.004
[10] Ballico, E.; Chiantini, L., Sets computing the symmetric tensor rank, Mediter. J. Math., 10, 643-654 (2013) · Zbl 1272.14039 · doi:10.1007/s00009-012-0214-4
[11] Bigatti, Am; Geramita, Av; Migliore, J., Geometric consequences of extremal behavior in a theorem of Macaulay, Trans. Am. Math. Soc., 346, 203-235 (1994) · Zbl 0820.13019 · doi:10.1090/S0002-9947-1994-1272673-7
[12] Iarrobino, A.; Kanev, V., Power Sums, Gorenstein Algebras, and Determinantal Loci. Lecture Notes in Mathematics (1999), Berlin, New York, NY: Springer, Berlin, New York, NY · Zbl 0942.14026
[13] Chiantini, L.: Hilbert Functions and Tensor Analysis (2018). arXiv:1807.00642 · Zbl 1428.14009
[14] Ballico, E.; Bernardi, A., Decomposition of homogeneous polynomials with low rank, Math. Z., 271, 1141-1149 (2012) · Zbl 1252.14032 · doi:10.1007/s00209-011-0907-6
[15] Angelini, L., Chiantini, E., Mazzon, A.: Identifiability for a Class of Symmetric Tensors (2018). arXiv:1811.01865 · Zbl 1420.14099
[16] Chiantini, L.; Ottaviani, G.; Vannieuwenhoven, N., Effective criteria for specific identifiability of tensors and forms, SIAM J. Matrix Anal. Appl., 38, 656-681 (2017) · Zbl 1371.65038 · doi:10.1137/16M1090132
[17] Quarteroni, A.; Sacco, R.; Saleri, F., Numerical Mathematics. Texts in Applied Mathematics (2000), Berlin, New York, NY: Springer, Berlin, New York, NY · Zbl 0943.65001
[18] Buczyński, J.; Ginensky, A.; Landsberg, Jm, Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture, J. Lond. Math. Soc., 88, 1-24 (2013) · Zbl 1303.14056 · doi:10.1112/jlms/jds073
[19] Bernardi, A.; Gimigliano, A.; Idá, M., Computing symmetric rank for symmetric tensors, J. Symb. Comput., 46, 1, 34-53 (2011) · Zbl 1211.14057 · doi:10.1016/j.jsc.2010.08.001
[20] Chiantini, L.; Ciliberto, C., On the concept of k-secant order of a variety, J. Lond. Math. Soc., 73, 436-454 (2006) · Zbl 1101.14067 · doi:10.1112/S0024610706022630
[21] Davis, E., Hilbert functions and complete intersections, Rend. Semin. Mat. Univ. Polit. Torino, 42, 333-353 (1984)
[22] Angelini, E., Chiantini, L.: On the Identifiability of Ternary Forms (2019). arXiv:1901.01796 · Zbl 1420.14099
[23] Chiantini, L.; Ottaviani, G.; Vannieuwenhoven, N., On generic identifiability of symmetric tensors of subgeneric rank, Trans. Am. Math. Soc., 369, 4021-4042 (2017) · Zbl 1360.14021 · doi:10.1090/tran/6762
[24] Alexander, J.; Hirschowitz, A., Polynomial interpolation in several variables, J. Algebr. Geom., 4, 201-222 (1995) · Zbl 0829.14002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.