×

Absolute reconstruction for sums of powers of linear forms: degree 3 and beyond. (English) Zbl 1541.14083

The paper by Pascal Koiran and Subhayan Saha focuses on the decomposition of polynomials into sums of powers of linear forms.
The authors present a randomized algorithm to address whether a given homogeneous polynomial \( f \in K[x_1, ..., x_n] \) of degree \( d \) can be expressed as a linear combination of \( d \)-th powers of linearly independent complex linear forms.
From a theoretical point of view, algorithms addressing this problem already existed. The significance of the present paper lies in the effectiveness and low complexity of the proposed algorithm. As a randomized algorithm, the output will be approximate.
The primary contributions and findings of the study are summarized as follows:
The algorithm enhances the running time for degree 3 polynomials by a factor of \( n \) compared to the previous algorithm by P. Koiran and M. Skomra [Theor. Comput. Sci. 887, 63–84 (2021; Zbl 1483.13044)]. This optimization introduces a two-sided error to the algorithm.
The paper introduces a randomized blackbox algorithm for polynomials of degree greater than 3, which operates in polynomial time with respect to \( n \) and \( d \) in an algebraic model that allows only arithmetic operations and equality tests. This is different from a prior approach by N. Kayal [SODA 2011, 1409–1421 (2011; Zbl 1376.68166)], which relied on polynomial factorization and was not polynomial time in standard computational models.
If \( f \) has rational coefficients (i.e., \( K = \mathbb{Q} \)), the algorithm’s running time is polynomial in \( n \), \( d \), and the maximum bit size of any coefficient. This marks the first polynomial time algorithm for this problem over \( \mathbb{C} \) in the bit model of computation.
One of the limitations of this algorithm is that it requires the output decomposition points of the polynomial to be linearly independent. This represents the “simpler” case, even for the symbolic algorithms.

MSC:

14Q65 Geometric aspects of numerical algebraic geometry
68W20 Randomized algorithms
68W30 Symbolic computation and algebraic computation
15A27 Commutativity of matrices
68Q25 Analysis of algorithms and problem complexity
68Q87 Probability in computer science (algorithm analysis, random structures, phase transitions, etc.)
15A20 Diagonalization, Jordan forms
14N07 Secant varieties, tensor rank, varieties of sums of powers

References:

[1] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade & Matus Telgarsky (2014). Tensor Decompositions for Learning Latent Variable Models. Journal of Machine Learning Research 15(80), 2773-2832. URL http://jmlr.org/papers/v15/anandkumar14b.html. · Zbl 1319.62109
[2] Erwin H. Bareiss (1968). Sylvester’s Identity and Multistep Integer-Preserving Gaussian Elimination. Mathematics of Computation 22(103), 565-578. ISSN 00255718, 10886842. URL http://www.jstor.org/stable/2004533. · Zbl 0187.09701
[3] Alessandra Bernardi, Alessandro Gimigliano & Monica Ida (2011). Computing symmetric rank for symmetric tensors. Journal of Symbolic Computation 46(1), 34-53. · Zbl 1211.14057
[4] Vishwas Bhargava, Shubhangi Saraf & Ilya Volkovich (2021). Reconstruction Algorithms for Low-Rank Tensors and Depth-3 Multilinear Circuits. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC). URL doi:10.1145/3406325.3451096. · Zbl 07765212
[5] Aditya Bhaskara, Moses Charikar, Ankur Moitra & Aravindan Vijayaraghavan (2014). Smoothed Analysis of Tensor Decompositions. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC. URL doi:10.1145/2591796.2591881. · Zbl 1315.68203
[6] L. Blum, F. Cucker, M. Shub & S. Smale (1998). Complexity and Real Computation. Springer-Verlag. · Zbl 0872.68036
[7] L. Blum, M. Shub & S. Smale (1989). On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society 21(1), 1-46. · Zbl 0681.03020
[8] Jrme Brachat, Pierre Comon, Bernard Mourrain & Elias Tsigaridas (2010). Symmetric tensor decomposition. Linear Algebra and its Applications 433(11-12), 1851-1872 · Zbl 1206.65141
[9] Enrico Carlini (2006). Reducing the number of variables of a polynomial. In Algebraic geometry and geometric modeling, Math. Vis., 237-247. Springer, Berlin. URL doi:10.1007/978-3-540-33275-6_15. · Zbl 1110.13019
[10] Guillaume Cheze & André Galligo (2005). Four lectures on polynomial absolute factorization. In Solving polynomial equations, 339-392. Springer. · Zbl 1152.13302
[11] Guillaume Chéze & Grégoire Lecerf (2007). Lifting and recombination techniques for absolute factorization. Journal of Complexity 23(3), 380-420. · Zbl 1130.12007
[12] Richard A. Demillo & Richard J. Lipton (1978). A probabilistic remark on algebraic program testing. Information Processing Letters 7(4), 193-195. URL https://www.sciencedirect.com/science/article/pii/0020019078900674. · Zbl 0397.68011
[13] Michael A. Forbes, Sumanta Ghosh & Nitin Saxena (2018). Towards Blackbox Identity Testing of Log-Variate Circuits. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). URL http://drops.dagstuhl.de/opus/volltexte/2018/9058. · Zbl 1499.68390
[14] Rūsiņš Freivalds (1979). Fast probabilistic algorithms. In International Symposium on Mathematical Foundations of Computer Science (MFCS), 57-69. Springer. · Zbl 0408.68035
[15] Shuhong Gao (2003). Factoring multivariate polynomials via partial differential equations. Mathematics of computation 72(242), 801-822. · Zbl 1052.12006
[16] Ignacio García-Marco, Pascal Koiran & Timothée Pecatte (2017). Reconstruction Algorithms for Sums of Affine Powers. In Proc. International Symposium on Symbolic and Algebraic Computation (ISSAC), 317-324. URL doi:10.1145/3087604.3087605. · Zbl 1445.12001
[17] Ignacio García-Marco, Pascal Koiran & Timothée Pecatte (2018). Polynomial equivalence problems for sums of affine powers. In Proc. International Symposium on Symbolic and Algebraic Computation (ISSAC). · Zbl 1445.12002
[18] Ankit Garg, Nikhil Gupta, Neeraj Kayal & Chandan Saha (2019). Determinant Equivalence Test over Finite Fields and over Q. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). URL http://drops.dagstuhl.de/opus/volltexte/2019/10638. · Zbl 07561555
[19] Joachim von zur Gathen & J¨urgen Gerhard (2013). Modern Computer Algebra. Cambridge University Press, USA, 3rd edition. · Zbl 1277.68002
[20] Richard Harshman (1970). Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis. UCLA working papers in phonetics .
[21] Roger Horn & Charles Johnson (2013). Matrix Analysis. Cambridge University Press (second edition). · Zbl 1267.15001
[22] Zohar Karnin & Amir Shpilka (2009). Reconstruction of generalized depth-3 arithmetic circuits with bounded top fan-in. In 24th Annual IEEE Conference on Computational Complexity (CCC), 274-285. · Zbl 1274.68133
[23] Neeraj Kayal (2011). Efficient algorithms for some special cases of the polynomial equivalence problem. In Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied Mathematics. · Zbl 1376.68166
[24] Neeraj Kayal, Vineet Nair, Chandan Saha & Sébastien Tavenas (2018). Reconstruction of full rank algebraic branching programs. ACM Transactions on Computation Theory (TOCT) 11(1), 2. · Zbl 1440.68081
[25] Neeraj Kayal & Chandan Saha (2019). Reconstruction of nondegenerate homogeneous depth three circuits. In Proc. 51st Annual ACM Symposium on Theory of Computing (STOC), 413-424. · Zbl 1433.68139
[26] Walter Keller-Gehrig (1985). Fast algorithms for the characteristics polynomial. Theoretical Computer Science 36, 309 - 317. ISSN 0304-3975. URL http://www.sciencedirect.com/science/article/pii/0304397585900490. · Zbl 0565.68041
[27] Pascal Koiran & Subhayan Saha (2022). Black Box Absolute Reconstruction for Sums of Powers of Linear Forms. In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). URL https://drops.dagstuhl.de/opus/volltexte/2022/17416. · Zbl 1541.14083
[28] Pascal Koiran & Subhayan Saha (2023). Complete Decomposition of Symmetric Tensors in Linear Time and Polylogarithmic Precision. In 13th International Conference on Algorithms and Complexity (CIAC 2023). URL https://arxiv.org/abs/2211.07407. · Zbl 1541.14083
[29] Pascal Koiran & Mateusz Skomra (2021). Derandomization and absolute reconstruction for sums of powers of linear forms. Theoretical Computer Science 887, 63-84. · Zbl 1483.13044
[30] T. Kolda & B. Bader (2009). Tensor Decompositions and Applications. SIAM Rev. 51, 455-500. · Zbl 1173.65029
[31] Frédéric Magniez & Ashwin Nayak (2007). Quantum complexity of testing group commutativity. Algorithmica 48(3), 221-232. · Zbl 1121.68056
[32] A. Moitra (2018). Algorithmic Aspects of Machine Learning. Cambridge University Press. URL https://books.google.fr/books?id=ruVqDwAAQBAJ. · Zbl 1484.68007
[33] Igor Pak (2012). Testing commutativity of a group and the power of randomization. LMS Journal of Computation and Mathematics 15, 38-43. · Zbl 1296.20068
[34] Shir Peleg, Amir Shpilka & Ben Lee Volk (2022). Tensor Reconstruction Beyond Constant Rank.
[35] Sridhar Rajagopalan & Leonard J. Schulman (2000). Verification of Identities. SIAM Journal on Computing 29(4), 1155-1163. URL doi:10.1137/S0097539797325387. · Zbl 0947.68074
[36] A. Schönhage & V. Strassen (1971). Schnelle Multiplikation großer Zahlen. Computing 7(3), 281-292. URL doi:10.1007/BF02242355. · Zbl 0223.68007
[37] J. T. Schwartz (1980). Fast Probabilistic Algorithms for Verification of Polynomial Identities. J. ACM 27(4), 701-717. URL doi:10.1145/322217.322225. · Zbl 0452.68050
[38] Hani Shaker (2009). Topology and factorization of polynomials. Mathematica Scandinavica 51-59. · Zbl 1184.12001
[39] Yaroslav Shitov (2016). How hard is the tensor rank? arXiv preprint arXiv:1611.01559 . · Zbl 1334.15067
[40] Amir Shpilka (2009). Interpolation of depth-3 arithmetic circuits with two multiplication gates. SIAM Journal on Computing 38(6), 2130- 2161. · Zbl 1191.68354
[41] Richard Zippel (1979). Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic Computation, 216-226. Springer Berlin Heidelberg, Berlin, Heidelberg. · Zbl 0418.68040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.