×

Identifying limits of ideals of points in the case of projective space. (English) Zbl 1509.14011

Summary: We study the closure of the locus of radical ideals in the multigraded Hilbert scheme associated with a standard graded polynomial ring and the Hilbert function of a homogeneous coordinate ring of points in general position in projective space. In the case of projective plane, we give a sufficient condition for an ideal to be in the closure of the locus of radical ideals. For projective space of arbitrary dimension we present a necessary condition. The paper is motivated by the border apolarity lemma which connects such multigraded Hilbert schemes with the theory of ranks of polynomials.

MSC:

14C05 Parametrization (Chow and Hilbert schemes)
14N07 Secant varieties, tensor rank, varieties of sums of powers

Software:

Macaulay2

References:

[1] Atiyah, M.; MacDonald, I., Introduction to Commutative Algebra, Addison-Wesley Series in Mathematics (1994), Avalon Publishing
[2] Bernardi, A.; Gimigliano, A.; Idà, M., Computing symmetric rank for symmetric tensors, J. Symb. Comput., 46, 34-53 (Aug. 2009) · Zbl 1211.14057
[3] Bruns, W.; Herzog, H., Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics (1998), Cambridge University Press · Zbl 0909.13005
[4] Buczyńska, W.; Buczyński, J., Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes, J. Algebraic Geom., 23 (Jan. 2014) · Zbl 1295.14047
[5] Buczyńska, W.; Buczyński, J., On differences between the border rank and the smoothable rank of a polynomial, Glasg. Math. J., 57, 02, 401-413 (May 2015) · Zbl 1350.14044
[6] Buczyńska, Weronika; Buczyński, Jarosław, Apolarity, border rank, and multigraded Hilbert scheme, Duke Math. J., 170, 16, 3659-3702 (2021) · Zbl 1481.14006
[7] Buczyńska, W.; Buczyński, J.; Kleppe, J.; Teitler, Z., Apolarity and direct sum decomposability of polynomials, Mich. Math. J., 64, 4, 675-719 (Nov. 2015) · Zbl 1339.13012
[8] Buczyński, J.; Landsberg, J. M., On the third secant variety, J. Algebraic Comb., 40, 2, 475-502 (Sep. 2014) · Zbl 1325.14069
[9] Cartwright, D. A.; Erman, D.; Velasco, M.; Viray, B., Hilbert schemes of 8 points, Algebra Number Theory, 3, 7, 763-795 (2009) · Zbl 1187.14005
[10] Casnati, G.; Jelisiejew, J.; Notari, R., Irreducibility of the Gorenstein loci of Hilbert schemes via ray families, Algebra Number Theory, 9, 7, 1525-1570 (2015) · Zbl 1349.14011
[11] Chandler, K. A., Regularity of the powers of an ideal, Commun. Algebra, 25, 3773-3776 (1997) · Zbl 0928.14033
[12] Conner, A.; Harper, A.; Landsberg, J. M., New lower bounds for matrix multiplication and the 3x3 determinant (2019)
[13] Cox, D. A., The homogeneous coordinate ring of a toric variety, J. Algebraic Geom., 4, 1, 17-50 (1995) · Zbl 0846.14032
[14] Cox, D. A.; Little, J.; O’Shea, D., Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 4/e, Undergraduate Texts in Mathematics (2015), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1335.13001
[15] Eisenbud, D., Commutative Algebra: With a View Toward Algebraic Geometry, Graduate Texts in Mathematics (1995), Springer · Zbl 0819.13001
[16] Eisenbud, D., The Geometry of Syzygies: A Second Course in Algebraic Geometry and Commutative Algebra, Graduate Texts in Mathematics (2005), Springer · Zbl 1066.14001
[17] Fantechi, B.; Göttsche, L.; Illusie, L.; Kleiman, S.; Nitsure, N.; Vistoli, A., Fundamental Algebraic Geometry: Grothendieck’s FGA Explained. Mathematical Surveys and Monographs (2005), American Mathematical Society · Zbl 1085.14001
[18] Fogarty, J., Algebraic families on an algebraic surface, Am. J. Math., 90, 2, 511-521 (1968) · Zbl 0176.18401
[19] Fulton, W., Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (1998), Springer: Springer New York · Zbl 0885.14002
[20] Gałązka, M.; Mańdziuk, T.; Rupniewski, F., Distinguishing secant from cactus varieties (2020)
[21] Görtz, U.; Wedhorn, T., Algebraic Geometry: Part I: Schemes. With Examples and Exercises, Advanced Lectures in Mathematics (2010), Vieweg+Teubner Verlag · Zbl 1213.14001
[22] Gotzmann, G., A stratification of the Hilbert scheme of points in the projective plane, Math. Z., 199, 4, 539-548 (1988) · Zbl 0637.14003
[23] Grayson, D. R.; Stillman, M. E., Macaulay2, a software system for research in algebraic geometry, available at
[24] Haiman, M.; Sturmfels, B., Multigraded Hilbert schemes, J. Algebraic Geom., 13, 725-769 (Mar. 2004) · Zbl 1072.14007
[25] Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics, vol. 52 (1977), Springer-Verlag: Springer-Verlag New York · Zbl 0367.14001
[26] Huang, H.; Michałek, M.; Ventura, E., Vanishing Hessian, wild forms and their border VSP, Math. Ann., 378, 3, 1505-1532 (Dec. 2020) · Zbl 1448.14004
[27] Iarrobino, A., Reducibility of the families of 0-dimensional schemes on a variety, Invent. Math., 15, 1, 72-77 (Mar. 1972) · Zbl 0227.14006
[28] Iarrobino, A.; Kanev, V.; Kleiman, S., Power Sums, Gorenstein Algebras, and Determinantal Loci, Lecture Notes in Mathematics (2006), Springer Berlin Heidelberg
[29] Jelisiejew, J., VSPs of cubic fourfolds and the Gorenstein locus of the Hilbert scheme of 14 points on \(\mathbb{A}^6\), Linear Algebra Appl., 557 (Nov. 2016) · Zbl 1404.14009
[30] Miller, E.; Sturmfels, B., Combinatorial Commutative Algebra, Graduate Texts in Mathematics (2004), Springer: Springer New York
[31] Teitler, Z., Geometric lower bounds for generalized ranks (2014)
[32] (2020), The Stacks project authors. The stacks project
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.