×

Fidelity of quantum teleportation in correlated quantum channels. (English) Zbl 1508.81374

Summary: We have studied the standard quantum teleportation of an arbitrary single qubit state for the situation in which a two-qubit X-state as a resource successively passes through correlated quantum channels, including amplitude-damping, phase-damping, and depolarizing channels. Analytical expressions of full entangled fraction (which is related to fidelity of quantum teleportation) suffered from these noisy channels are presented. The results demonstrate that there is a threshold value \(\mu^\star\), above which the source state even subjected to decoherence becomes useful for quantum teleportation. Besides, we also develop an effective strategy to enhance quantum teleportation fidelity under decoherence channels by means of filtering operation. The underlying physical mechanism of the enhancement of fidelity is also analyzed.

MSC:

81P48 LOCC, teleportation, dense coding, remote state operations, distillation
81P47 Quantum channels, fidelity
Full Text: DOI

References:

[1] Bennett, CH; Brassard, G.; Crepeau, C.; Jozsa, R.; Peres, A.; Wotters, WK, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channel, Phys. Rev. Lett., 70, 1895 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[2] Jung, E.; Hwang, MR; Park, DK; Son, JW; Tamaryan, S., Mixed-state entanglement and quantum teleportation through noisy channels, J. Phys. A: Math. Theor., 41, 385302 (2008) · Zbl 1147.81008 · doi:10.1088/1751-8113/41/38/385302
[3] Karlsson, A.; Bourennane, M., Quantum teleportation using three-particle entanglement, Phys. Rev. A, 58, 4394 (1998) · doi:10.1103/PhysRevA.58.4394
[4] Khoury, AZ; Milman, P., Quantum teleportation in the spin-orbit variables of photon pairs, Phys. Rev. A, 83, 060301 (2011) · doi:10.1103/PhysRevA.83.060301
[5] Dáriano, GM; Lo Presti, P.; Sacchi, MF, Bell measurements and observables, Phys. Lett. A, 272, 32 (2000) · Zbl 1115.81308 · doi:10.1016/S0375-9601(00)00410-2
[6] Espoukeh, P.; Pedram, P., Quantum teleportation through noisy channels with multi-qubit GHZ states, Quant. Inf. Process., 13, 1789 (2014) · Zbl 1306.81016 · doi:10.1007/s11128-014-0766-2
[7] Hu, X.; Gu, Y.; Gong, Q.; Guo, G., Noise effect on fidelity of two-qubit teleportation, Phys. Rev. A, 81, 054302 (2010) · doi:10.1103/PhysRevA.81.054302
[8] Bandyopadhyay, S.; Ghosh, A., Optimal fidelity for a quantum channel may be attained by nonmaximally entangled states, Phys. Rev. A, 86, 020304 (2012) · doi:10.1103/PhysRevA.86.020304
[9] Knoll, LT; Schmiegelow, CT; Larotonda, MA, Noisy quantum teleportation: an experimental study on the influence of local environments, Phys. Rev. A, 90, 042332 (2014) · doi:10.1103/PhysRevA.90.042332
[10] Fortes, R.; Rigolin, G., Probabilistic quantum teleportation via thermal entanglement, Phy. Rev. A, 96, 022315 (2017) · doi:10.1103/PhysRevA.96.022315
[11] Yin, J., Quantum teleportation and entanglement distribution over 100-kilometre free-space channels, Nature, 488, 185188 (2012) · doi:10.1038/nature11332
[12] Bennett, CH; Brassard, G.; Popescu, S.; Schumacher, B.; Smolin, JA; Wootters, WK, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett., 76, 722 (1996) · doi:10.1103/PhysRevLett.76.722
[13] Yeo, Y., Teleportation via thermally entangled state of a two-qubit Heisenberg XX chain, Phys. Lett. A, 309, 215 (2003) · Zbl 1009.81009 · doi:10.1016/S0375-9601(03)00198-1
[14] Pramanik, T.; Majumdar, AS, Improving the fidelity of teleportation through noisy channels using weak measurement, Phys. Lett. A, 377, 3209 (2013) · Zbl 1295.81032 · doi:10.1016/j.physleta.2013.10.012
[15] Xiao, X.; Yao, Y.; Li, YL; Xie, YM, Enhanced quantum teleportation in the background of Schwarzschild spacetime by weak measurements, Eur. Phys. J. Plus, 135, 79 (2020) · doi:10.1140/epjp/s13360-019-00010-5
[16] Li, YL; Zu, CJ; Wei, DM, Enhance quantum teleportation under correlated amplitude damping decoherence by weak measurement and quantum measurement reversal, Quant. Inf. Process., 18, 2 (2019) · Zbl 1417.81065 · doi:10.1007/s11128-018-2114-4
[17] Taketani, BG; de Melo, F.; de Matos Filho, RL, Optimal teleportation with a noisy source, Phys. Rev. A, 85, 020301 (2012) · doi:10.1103/PhysRevA.85.020301
[18] Knoll, LT; Schmiegelow, ChT; Larotonda, MA, Noisy quantum teleportation: an experimental study on the influence of local environments, Phys. Rev. A, 90, 042332 (2014) · doi:10.1103/PhysRevA.90.042332
[19] Van, H.N., Hoang, A.L.: Improving two-qubit state teleportation affected by amplitude damping noise based on choosing appropriate quantum channel, p. 07064 (2017). arXiv:1705.07064v2
[20] Bandyopadhyay, S., Origin of noisy states whose teleportation fidelity can be enhanced through dissipation, Phys. Rev. A, 65, 022302 (2002) · doi:10.1103/PhysRevA.65.022302
[21] Fortes, R.; Rigolin, G., Fighting noise with noise in realistic quantum teleportation, Phys. Rev. A, 92, 012338 (2015) · doi:10.1103/PhysRevA.92.012338
[22] Yeo, Y., Local noise can enhance two-qubit teleportation, Phys. Rev. A, 78, 022334 (2008) · doi:10.1103/PhysRevA.78.022334
[23] Oh, S.; Lee, S.; Lee, HW, Fidelity of quantum teleportation through noisy channels, Phys. Rev. A, 66, 022316 (2002) · doi:10.1103/PhysRevA.66.022316
[24] Bowen, G.; Bose, S., Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity, Phys. Rev. Lett., 87, 267901 (2001) · doi:10.1103/PhysRevLett.87.267901
[25] Bennett, CH; DiVincenzo, DP; Smolin, JA; Wootters, WK, Mixed-state entanglement and quantum error correction, Phys. Rev. A, 54, 3824 (1996) · Zbl 1371.81041 · doi:10.1103/PhysRevA.54.3824
[26] Horodecki, M.; Horodecki, P.; Horodecki, R., General teleportation channel, singlet fraction, and quasidistillation, Phys. Rev. A, 60, 1888 (1999) · Zbl 1005.81505 · doi:10.1103/PhysRevA.60.1888
[27] Horodecki, R.; Horodecki, M.; Horodecki, P., Teleportation, Bell’s inequalities and inseparability, Phys. Lett. A, 222, 21 (1996) · Zbl 0972.81507 · doi:10.1016/0375-9601(96)00639-1
[28] Macchiavello, C.; Palma, GM, Entanglement-enhanced information transmission over a quantum channel with correlated noise, Phys. Rev. A, 65, 050301 (2002) · doi:10.1103/PhysRevA.65.050301
[29] Yeo, Y.; Skeen, A., Time-correlated quantum amplitude-damping channel, Phys. Rev. A, 67, 064301 (2003) · doi:10.1103/PhysRevA.67.064301
[30] Dáriano, A.; Benenti, G.; Falci, G., Quantum capacity of dephasing channels with memory, New J. Phys., 9, 310 (2007) · doi:10.1088/1367-2630/9/9/310
[31] Macchiavello, C.; Palma, GM; Virmani, S., Transition behavior in the channel capacity of two-quibit channels with memory, Phys. Rev. A, 69, 010303 (2004) · doi:10.1103/PhysRevA.69.010303
[32] Jahangir, R.; Arshed, N.; Toor, AH, Quantum capacity of an amplitude-damping channel with memory, Quant. Inf. Process., 14, 765 (2015) · Zbl 1311.81057 · doi:10.1007/s11128-014-0883-y
[33] Daffer, S.; Wodkiewicz, K.; McIver, J., Quantum Markov channels for qubits, Phys. Rev. A, 67, 062312 (2003) · Zbl 1225.81166 · doi:10.1103/PhysRevA.67.062312
[34] Daffer, S.; Wodkiewicz, K.; Cresser, J.; McIver, J., Depolarizing channel as a completely positive map with memory, Phys. Rev. A, 70, 010304 (2004) · doi:10.1103/PhysRevA.70.010304
[35] Gisin, N., Hidden quantum nonlocality revealed by local filters, Phys. Lett. A, 210, 151 (1996) · Zbl 1073.81512 · doi:10.1016/S0375-9601(96)80001-6
[36] Sun, Q.; Al-Amri, M.; Davidovich, L.; Suhail Zubairy, M., Reversing entanglement change by a weak measurement, Phys. Rev. A, 82, 052323 (2010) · doi:10.1103/PhysRevA.82.052323
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.