×

Quantum teleportation through noisy channels with multi-qubit GHZ states. (English) Zbl 1306.81016

Summary: We investigate two-party quantum teleportation through noisy channels for multi-qubit Greenberger-Horne-Zeilinger (GHZ) states and find which state loses less quantum information in the process. The dynamics of states is described by the master equation with the noisy channels that lead to the quantum channels to be mixed states. We analytically solve the Lindblad equation for \(n\)-qubit GHZ states \(n\in \{4,5,6\}\) where Lindblad operators correspond to the Pauli matrices and describe the decoherence of states. Using the average fidelity, we show that 3GHZ state is more robust than \(n\)GHZ state under most noisy channels. However, \(n\)GHZ state preserves same quantum information with respect to Einstein-Podolsky-Rosen and 3GHZ states where the noise is in \(x\) direction in which the fidelity remains unchanged. We explicitly show that E. Jung et al.’s conjecture [“Greenberger-Horne-Zeilinger versus \(W\) states: quantum teleportation through noisy channels”, Phys Rev A 78, No. 1, Article ID 012312, 11 p. (2008; doi:10.1103/PhysRevA.78.012312)], namely “average fidelity with same-axis noisy channels is in general larger than average fidelity with different-axes noisy channels,” is not valid for 3GHZ and 4GHZ states.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
81S22 Open systems, reduced dynamics, master equations, decoherence
94A40 Channel models (including quantum) in information and communication theory

References:

[1] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[2] Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[3] Chakrabarty, I.: Teleportation via a mixture of a two qubit subsystem of a N-qubit W and GHZ state. Eur. Phys. J. D 57, 265 (2010) · doi:10.1140/epjd/e2010-00017-8
[4] Liang, H.-Q., Liu, J.-M., Feng, S.-S., Chen, J.-G.: Quantum teleportation with partially entangled states via noisy channels. Quantum Inf. Process. 12, 2671 (2013) · Zbl 1283.81026 · doi:10.1007/s11128-013-0555-3
[5] Wang, X.-W., Shan, Y.-G., Xia, L.-X., Lu, M.-W.: Dense coding and teleportation with one-dimensional cluster states. Phys. Lett. A 364, 7 (2007) · Zbl 1203.81046 · doi:10.1016/j.physleta.2006.11.056
[6] Paul, N., Menon, J.V., Karumanchi, S., Muralidharan, S., Panigrahi, P.K.: Quantum tasks using six qubit cluster states. Quantum Inf. Process. 10, 619 (2011) · Zbl 1235.81040 · doi:10.1007/s11128-010-0217-7
[7] Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998) · doi:10.1103/PhysRevA.58.4394
[8] Wang, L.-Q., Zha, X.-W.: Two schemes of teleportation one-particle state by a three-particle GHZ state. Opt. Commun. 283, 4118 (2010) · doi:10.1016/j.optcom.2010.06.017
[9] Gorbachev, V.N., Rodichkina, A.A., Truilko, A.I.: On preparation of the entangled W-states from atomic ensembles. Phys. Lett. A 310, 339 (2003) · Zbl 1098.81736 · doi:10.1016/S0375-9601(03)00404-3
[10] Joo, J., Park, Y.-J., Oh, S., Kim, J.: Quantum teleportation via a W state. New J. Phys. 5, 136 (2003) · doi:10.1088/1367-2630/5/1/136
[11] Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006) · doi:10.1103/PhysRevA.74.062320
[12] Hu, M.-L.: Robustness of Greenberger-Horne-Zeilinger and W states for teleportation in external environments. Phys. Lett. A 375, 922 (2011) · doi:10.1016/j.physleta.2010.12.058
[13] Pati, A.K.: Assisted cloning and orthogonal complementing of an unknown state. Phys. Rev. A 61, 022308 (2000) · doi:10.1103/PhysRevA.61.022308
[14] Jung, E., Hwang, M.R., Park, D.K., Son, J.W., Tamaryan, S.: Perfect quantum teleportation and superdense coding with \[P_{max} = 1/2\] Pmax=1/2 states. arXiv:0711.3520
[15] Ma, Z.H., Zhang, F.L., Deng, D.L., Chen, J.L.: Bounds of concurrence and their relation with fidelity and frontier states. Phys. Lett. A 373, 1616 (2009) · Zbl 1229.81032 · doi:10.1016/j.physleta.2009.03.009
[16] Wang, X., Sun, Z., Wang, Z.D.: Operator fidelity susceptibility: an indicator of quantum criticality. Phys. Rev. A 79, 012105 (2010) · doi:10.1103/PhysRevA.79.012105
[17] Ma, J., Xu, L., Xiong, H., Wang, X.: Reduced fidelity susceptibility and its finite-size scaling behaviors in the Lipkin-Meshkov-Glick model. Phys. Rev. E 78, 051126 (2008) · doi:10.1103/PhysRevE.78.051126
[18] Lu, X.-M., Sun, Z., Wang, X., Zanardi, P.: Operator fidelity susceptibility, decoherence, and quantum criticality. Phys. Rev. A 78, 032309 (2008) · doi:10.1103/PhysRevA.78.032309
[19] Giorda, P., Zanardi, P.: Quantum chaos and operator fidelity metric. Phys. Rev. E 81, 017203 (2010) · doi:10.1103/PhysRevE.81.017203
[20] Horodecki, M., Horodocki, P., Horodocki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888 (1999) · Zbl 1005.81505 · doi:10.1103/PhysRevA.60.1888
[21] Banaszek, K.: Fidelity balance in quantum operations. Phys. Rev. Lett. 86, 1366 (2001) · doi:10.1103/PhysRevLett.86.1366
[22] Jung, E., Hwang, M.R., Park, D.K., Son, J.W., Tamaryan, S.: Mixed-state entanglement and quantum teleportation through noisy channels. J. Phys. A 41, 385302 (2008) · Zbl 1147.81008 · doi:10.1088/1751-8113/41/38/385302
[23] Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002) · doi:10.1103/PhysRevA.66.022316
[24] Han, X.P., Liu, J.M.: Amplitude damping effects on controlled teleportation of a qubit by a tripartite W state. Phys. Scr. 78, 015001 (2008) · Zbl 1144.81440 · doi:10.1088/0031-8949/78/01/015001
[25] Rao, D.D.B., Panigrahi, P.K., Mitra, C.: Teleportation in the presence of common bath decoherence at the transmitting station. Phys. Rev. A 78, 022336 (2008) · doi:10.1103/PhysRevA.78.022336
[26] Jung, E., Hwang, M.R., Ju, Y.H., Kim, M.S., Yoo, S.K., Kim, H., Park, D.K., Son, J.W., Tamaryan, S., Cha, S.-K.: Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels. Phys. Rev. A 78, 012312 (2008) · doi:10.1103/PhysRevA.78.012312
[27] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) · Zbl 0343.47031 · doi:10.1007/BF01608499
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.