×

Tracy-Widom distributions for the Gaussian orthogonal and symplectic ensembles revisited: a skew-orthogonal polynomials approach. (English) Zbl 1469.60034

Summary: We study the distribution of the largest eigenvalue in the “Pfaffian” classical ensembles of random matrix theory, namely in the Gaussian orthogonal (GOE) and Gaussian symplectic (GSE) ensembles, using semi-classical skew-orthogonal polynomials, in analogy with the approach of C. Nadal and S. N. Majumdar [J. Stat. Mech. Theory Exp. 2011, No. 4, Paper No. P04001, 29 p. (2011; Zbl 1456.60025)] (NM) for the Gaussian unitary ensemble (GUE). Generalizing the techniques of M. Adler et al. [J. Stat. Phys. 99, No. 1–2, 141–170 (2000; Zbl 0989.82020)], and using “overlapping Pfaffian” or “compound Pfaffian” identities, we explicitly construct these semi-classical skew-orthogonal polynomials in terms of the semi-classical orthogonal polynomials studied by NM in the case of the GUE. With these polynomials we obtain expressions for the cumulative distribution functions of the largest eigenvalue in the GOE and the GSE. Further, by performing asymptotic analysis of these skew-orthogonal polynomials in the limit of large matrix size, we obtain an alternative derivation of the Tracy-Widom distributions for GOE and GSE. This asymptotic analysis relies on a certain Pfaffian identity, the proof of which employs the characterization of Pfaffians in terms of perfect matchings and link diagrams.

MSC:

60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)
60G70 Extreme value theory; extremal stochastic processes
33C47 Other special orthogonal polynomials and functions

References:

[1] Abramowitz, M., Stegun, I.A. (eds.): Handbook of mathematical functions, 10 edn. United States Department of Commerce, Washington D.C. (1972)
[2] Adler, M.; Forrester, P.; Nagao, T.; van Moerbeke, P., Classical skew orthogonal polynomials and random matrices, J. Stat. Phys., 99, 1-2, 141-170 (2000) · Zbl 0989.82020 · doi:10.1023/A:1018644606835
[3] Adler, M.; van Moerbeke, P., Toda versus Pfaff lattice and related polynomials, Duke Math. J., 112, 1, 1-58 (2002) · Zbl 1067.37111 · doi:10.1215/S0012-9074-02-11211-3
[4] Akemann, G.; Atkin, MR, Higher order analogues of Tracy-Widom distributions via the Lax method, J. Phys. A, 46, 1, 015202 (2012) · Zbl 1257.82056 · doi:10.1088/1751-8113/46/1/015202
[5] Akemann, G.; Kanzieper, E., Integrable structure of Ginibre’s ensemble of real random matrices and a Pfaffian integration theorem, J. Stat. Phys., 129, 1159-1231 (2007) · Zbl 1136.82019 · doi:10.1007/s10955-007-9381-2
[6] Amir, G.; Corwin, I.; Quastel, J., Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions, Commun. Pure Appl. Math., 64, 4, 466-537 (2011) · Zbl 1222.82070 · doi:10.1002/cpa.20347
[7] Atkin, MR; Zohren, S., Instantons and extreme value statistics of random matrices, J. High Energy Phys., 2014, 4, 118 (2014) · doi:10.1007/JHEP04(2014)118
[8] Au-Yang, H.; Perk, JHH, Toda lattice equation and Wronskians in the 2d Ising model, Physica D, 18, 1-3, 365-366 (1986) · doi:10.1016/0167-2789(86)90198-3
[9] Baik, J.; Barraquand, G.; Corwin, I.; Suidan, T., Pfaffian Schur processes and last passage percolation in a half-quadrant, Ann. Probab., 46, 6, 3015-3089 (2018) · Zbl 1428.60134 · doi:10.1214/17-AOP1226
[10] Baik, J.; Deift, P.; Johansson, K., On the distribution of the length of the longest increasing subsequence of random permutations, J. Am. Math. Soc., 12, 4, 1119-1178 (1999) · Zbl 0932.05001 · doi:10.1090/S0894-0347-99-00307-0
[11] Baik, J.; Jenkins, R., Limiting distribution of maximal crossing and nesting of Poissonized random matchings, Ann. Probab., 41, 6, 4359-4406 (2013) · Zbl 1303.60008 · doi:10.1214/12-AOP781
[12] Baik, J.; Rains, EM, Limiting distributions for a polynuclear growth model with external sources, J. Stat. Phys., 100, 3-4, 523-541 (2000) · Zbl 0976.82043 · doi:10.1023/A:1018615306992
[13] Barraquand, G.; Krajenbrink, A.; Doussal, PL, Half-space stationary Kardar-Parisi-Zhang equation, J. Stat. Phys., 181, 4, 1149-1203 (2020) · Zbl 1462.82045 · doi:10.1007/s10955-020-02622-z
[14] Basor, E.; Chen, Y., Painlevé V and the distribution function of a discontinuous linear statistic in the Laguerre unitary ensembles, J. Phys. A, 42, 3, 035203 (2008) · Zbl 1161.81014 · doi:10.1088/1751-8113/42/3/035203
[15] Biroli, G.; Bouchaud, JP; Potters, M., On the top eigenvalue of heavy-tailed random matrices, Europhys. Lett. EPL, 78, 1, 10001 (2007) · Zbl 1244.82029 · doi:10.1209/0295-5075/78/10001
[16] Bloemendal, A.; Virág, B., Limits of spiked random matrices I, Probab. Theory Relat. Fields, 156, 3, 795-825 (2013) · Zbl 1356.60014 · doi:10.1007/s00440-012-0443-2
[17] Bornemann, F.; Forrester, PJ, Singular values and evenness symmetry in random matrix theory, Forum Math., 28, 873-891 (2015) · Zbl 1347.15042 · doi:10.1515/forum-2015-0055
[18] Borodin, A.; Soshnikov, A., Janossy densities. I. Determinantal ensembles, J. Stat. Phys., 113, 3, 595-610 (2003) · Zbl 1070.15020 · doi:10.1023/A:1026025003309
[19] Borot, G.; Nadal, C., Right tail asymptotic expansion of Tracy-Widom beta laws, Random Matrices Theory Appl., 1, 3, 1250006 (2012) · Zbl 1266.60047 · doi:10.1142/S2010326312500062
[20] Bufetov, A.I., Cunden, F.D., Qiu, Y.: Conditional measures for pfaffian point processes: conditioning on a bounded domain. arXiv preprint arXiv:1912.10743 (2019)
[21] Calabrese, P.; Le Doussal, P.; Rosso, A., Free-energy distribution of the directed polymer at high temperature, Europhys. Lett. EPL, 90, 2, 20002 (2010) · doi:10.1209/0295-5075/90/20002
[22] Cao, M.; Chen, Y.; Griffin, J., Continuous and discrete Painlevé equations arising from the gap probability distribution of the finite \(n\) Gaussian unitary ensembles, J. Stat. Phys., 157, 2, 363-375 (2014) · Zbl 1309.34144 · doi:10.1007/s10955-014-1076-x
[23] Chiani, M., Distribution of the largest eigenvalue for real Wishart and Gaussian random matrices and a simple approximation for the tracy-widom distribution, J. Multivar. Anal., 129, 69-81 (2014) · Zbl 1359.60013 · doi:10.1016/j.jmva.2014.04.002
[24] de Bruijn, N., On some multiple integrals involving determinants, J. Indian Math. Soc. New Ser., 19, 133-151 (1955) · Zbl 0068.24904
[25] Dean, DS; Le Doussal, P.; Majumdar, SN; Schehr, G., Finite-temperature free fermions and the Kardar-Parisi-Zhang equation at finite time, Phys. Rev. Lett., 114, 11, 110402 (2015) · doi:10.1103/PhysRevLett.114.110402
[26] Dean, DS; Le Doussal, P.; Majumdar, SN; Schehr, G., Noninteracting fermions at finite temperature in a \(d\)-dimensional trap: Universal correlations, Phys. Rev. A, 94, 6, 063622 (2016) · doi:10.1103/PhysRevA.94.063622
[27] Dean, DS; Le Doussal, P.; Majumdar, SN; Schehr, G., Noninteracting fermions in a trap and random matrix theory, J. Phys. A, 52, 14, 144006 (2019) · Zbl 1509.81635 · doi:10.1088/1751-8121/ab098d
[28] Dotsenko, V., Bethe ansatz derivation of the Tracy-Widom distribution for one-dimensional directed polymers, Europhys. Lett. EPL, 90, 2, 20003 (2010) · doi:10.1209/0295-5075/90/20003
[29] Dyson, FJ, Statistical theory of the energy levels of complex systems. I., J. Math. Phys., 3, 1, 140-156 (1962) · Zbl 0105.41604 · doi:10.1063/1.1703773
[30] Dyson, FJ, Correlations between eigenvalues of a random matrix, Commun. Math. Phys., 19, 235-250 (1970) · Zbl 0221.62019 · doi:10.1007/BF01646824
[31] Forrester, P.; Mays, A., A method to calculate correlation functions for \(\beta =1\) random matrices of odd size, J. Stat. Phys., 134, 3, 443-462 (2009) · Zbl 1172.82010 · doi:10.1007/s10955-009-9684-6
[32] Forrester, PJ, The spectrum edge of random matrix ensembles, Nucl. Phys. B, 402, 3, 709-728 (1993) · Zbl 1043.82538 · doi:10.1016/0550-3213(93)90126-A
[33] Forrester, P.J.: Log-gases and random matrices, London Mathematical Society Monographs, vol. 34. Princeton University Press, Princeton (2010) · Zbl 1217.82003
[34] Forrester, PJ; Majumdar, SN; Schehr, G., Non-intersecting Brownian walkers and Yang-Mills theory on the sphere, Nucl. Phys. B, 844, 3, 500-526 (2011) · Zbl 1207.82022 · doi:10.1016/j.nuclphysb.2010.11.013
[35] Fyodorov, Y.V.: Level curvature distribution: From bulk to the soft edge of random Hermitian matrices. Acta Phys. Polonica A 120(6A), (2011)
[36] Fyodorov, YV; Perret, A.; Schehr, G., Large time zero temperature dynamics of the spherical \(p= 2\)-spin glass model of finite size, J. Stat. Mech. Theory Exp., 2015, 11, P11017 (2015) · Zbl 1456.82912 · doi:10.1088/1742-5468/2015/11/P11017
[37] Green, H.; Hurst, C., Order-disorder phenomena (1964), London: Interscience Publishers, London · Zbl 0138.22301
[38] Gueudré, T.; Le Doussal, P., Directed polymer near a hard wall and KPZ equation in the half-space, Europhys. Lett. EPL, 100, 2, 26006 (2012) · doi:10.1209/0295-5075/100/26006
[39] Harnad, J., Janossy densities, multimatrix spacing distributions and Fredholm resolvents, Int. Math. Res. Not., 2004, 48, 2599-2609 (2004) · Zbl 1077.45008 · doi:10.1155/S1073792804140786
[40] Imamura, T.; Sasamoto, T., Fluctuations of the one-dimensional polynuclear growth model with external sources, Nucl. Phys. B, 699, 3, 503-544 (2004) · Zbl 1123.82352 · doi:10.1016/j.nuclphysb.2004.07.030
[41] Janossy, L., On the absorption of a nucleon cascade, Proc. R. Irish Acad. Sect. A, 53, 181-188 (1950) · Zbl 0041.13602
[42] Johnstone, IM; Ma, Z., Fast approach to the Tracy-Widom law at the edge of GOE and GUE, Ann. Appl. Probab, 22, 5, 1962-1988 (2012) · Zbl 1253.60029 · doi:10.1214/11-AAP819
[43] Knuth, D.E.: Overlapping Pfaffians. Electron. J. Comb. 3, (1996) · Zbl 0862.15007
[44] Le Doussal, P.; Calabrese, P., The KPZ equation with flat initial condition and the directed polymer with one free end, J. Stat. Mech. Theory Exp., 2012, 6, P06001 (2012) · Zbl 1459.82352 · doi:10.1088/1742-5468/2012/06/P06001
[45] Liechty, K., Nonintersecting Brownian motions on the half-line and discrete Gaussian orthogonal polynomials, J. Stat. Phys., 147, 3, 582-622 (2012) · Zbl 1244.82065 · doi:10.1007/s10955-012-0485-y
[46] Majumdar, SN, Course 4 random matrices, the Ulam problem, directed polymers & growth models, and sequence matching, Les Houches, 85, 179-216 (2007) · doi:10.1016/S0924-8099(07)80011-4
[47] Majumdar, SN; Nechaev, S., Anisotropic ballistic deposition model with links to the Ulam problem and the Tracy-Widom distribution, Phys. Rev. E, 69, 1, 011103 (2004) · doi:10.1103/PhysRevE.69.011103
[48] Majumdar, SN; Nechaev, S., Exact asymptotic results for the Bernoulli matching model of sequence alignment, Phys. Rev. E, 72, 2, 020901 (2005) · doi:10.1103/PhysRevE.72.020901
[49] Majumdar, SN; Pal, A.; Schehr, G., Extreme value statistics of correlated random variables: A pedagogical review, Phys. Rep., 840, 1-32 (2020) · Zbl 1441.62115 · doi:10.1016/j.physrep.2019.10.005
[50] Majumdar, SN; Schehr, G., Top eigenvalue of a random matrix: Large deviations and third order phase transition, J. Stat. Mech. Theory Exp., 2014, 1, P01012 (2014) · Zbl 1456.82019 · doi:10.1088/1742-5468/2014/01/P01012
[51] Makey, G.; Galioglu, S.; Ghaffari, R.; Engin, ED; Yıldırım, G.; Yavuz, Ö.; Bektaş, O.; Nizam, ÜS; Akbulut, Ö.; Şahin, Ö., Universality of dissipative self-assembly from quantum dots to human cells, Nat. Phys., 16, 7, 795-801 (2020) · doi:10.1038/s41567-020-0879-8
[52] Mays, A.: A geometrical triumvirate of real random matrices. Ph.D. thesis, The University of Melbourne, Parkville (2011)
[53] Mays, A., A real quaternion spherical ensemble of random matrices, J. Stat. Phys., 153, 48-69 (2013) · Zbl 1279.15030 · doi:10.1007/s10955-013-0808-7
[54] Mays, A., Ponsaing, A., Schehr, G.: In preparation (2020)
[55] Mehta, ML, Random matrices (2004), Boston: Academic Press, Boston · Zbl 1107.15019
[56] Min, C.; Chen, Y., Linear statistics of matrix ensembles in classical background, Math. Methods Appl. Sci., 39, 13, 3758-3790 (2016) · Zbl 1370.15034 · doi:10.1002/mma.3824
[57] Min, C.; Chen, Y., Linear statistics of random matrix ensembles at the spectrum edge associated with the Airy kernel, Nucl. Phys. B, 950, 114836 (2020) · Zbl 1473.60020 · doi:10.1016/j.nuclphysb.2019.114836
[58] Monthus, C.; Garel, T., Typical versus averaged overlap distribution in spin glasses: Evidence for droplet scaling theory, Phys. Rev. B, 88, 13, 134204 (2013) · doi:10.1103/PhysRevB.88.134204
[59] Muir, T., A treatise on the theory of determinants (1882), London: Macmillan and Co., London · JFM 15.0118.05
[60] Nadal, C.: Matrices aléatoires et leurs applications à la physique statistique et quantique. Ph.D. thesis, Paris 11 (2011)
[61] Nadal, C.; Majumdar, SN, Nonintersecting Brownian interfaces and Wishart random matrices, Phys. Rev. E, 79, 6, 061117 (2009) · doi:10.1103/PhysRevE.79.061117
[62] Nadal, C.; Majumdar, SN, A simple derivation of the Tracy-Widom distribution of the maximal eigenvalue of a Gaussian unitary random matrix, J. Stat. Mech. Theory Exp., 2011, 4, P04001 (2011) · Zbl 1456.60025 · doi:10.1088/1742-5468/2011/04/P04001
[63] Nagao, T.; Wadati, M., Correlation functions of random matrix ensembles related to classical orthogonal polynomials, J. Phys. Soc. Jpn., 60, 10, 3298-3322 (1991) · doi:10.1143/JPSJ.60.3298
[64] Nguyen, GB; Remenik, D., Non-intersecting Brownian bridges and the Laguerre orthogonal ensemble, Ann. Inst. Henri Poincaré Probab. Stat., 53, 4, 2005-2029 (2017) · Zbl 1382.60122 · doi:10.1214/16-AIHP781
[65] Perk, JHH; Capel, HW; Quispel, GRW; Nijhoff, F., Finite-temperature correlations for the Ising chain in a transverse field, Physica A, 123, 1-49 (1984) · doi:10.1016/0378-4371(84)90102-X
[66] Perret, A.; Schehr, G., Near-extreme eigenvalues and the first gap of Hermitian random matrices, J. Stat. Phys., 156, 5, 843-876 (2014) · Zbl 1302.82058 · doi:10.1007/s10955-014-1044-5
[67] Perret, A.; Schehr, G., The density of eigenvalues seen from the soft edge of random matrices in the Gaussian \(\beta \)-ensembles, Acta Phys. Pol. B, 46, 9, 1693 (2015) · Zbl 1386.60028 · doi:10.5506/APhysPolB.46.1693
[68] Perret, A.; Schehr, G., Finite \(N\) corrections to the limiting distribution of the smallest eigenvalue of Wishart complex matrices, Random Matrices Theory Appl., 5, 1, 1650001 (2016) · Zbl 1381.15031 · doi:10.1142/S2010326316500015
[69] Prähofer, M.; Spohn, H., Universal distributions for growth processes in 1+1 dimensions and random matrices, Phys. Rev. Lett., 84, 21, 4882 (2000) · doi:10.1103/PhysRevLett.84.4882
[70] Rote, G.: Division-free algorithms for the determinant and the Pfaffian: Algebraic and combinatorial approaches. In: Alt, H. (ed.) Computational Discrete Mathematics: Advanced Lectures, pp. 119-135. Springer, Berlin Heidelberg, Berlin, Heidelberg (2001) · Zbl 1010.65022
[71] Sasamoto, T.; Spohn, H., One-dimensional Kardar-Parisi-Zhang equation: An exact solution and its universality, Phys. Rev. Lett., 104, 23, 230602 (2010) · Zbl 1459.82195 · doi:10.1103/PhysRevLett.104.230602
[72] Sinclair, CD, Correlation functions for \(\beta =1\) ensembles of matrices of odd size, J. Stat. Phys., 136, 17-33 (2009) · Zbl 1220.82066 · doi:10.1007/s10955-009-9771-8
[73] Sinclair, CD, Ensemble averages when \(\beta\) is a square integer, Monatshefte für Mathematik, 166, 121-144 (2012) · Zbl 1239.15020 · doi:10.1007/s00605-011-0371-8
[74] Sommers, HJ; Wieczorek, W., General eigenvalue correlations for the real Ginibre ensemble, J. Phys. A Math. Theor., 41, 40, 405003 (2008) · Zbl 1149.82005 · doi:10.1088/1751-8113/41/40/405003
[75] Soshnikov, A., Janossy densities. II. Pfaffian ensembles, J. Stat. Phys., 113, 3, 611-622 (2003) · Zbl 1071.15027 · doi:10.1023/A:1026077020147
[76] Soshnikov, A., Janossy densities of coupled random matrices, Commun. Math. Phys., 251, 3, 447-471 (2004) · Zbl 1071.82032 · doi:10.1007/s00220-004-1177-5
[77] Stembridge, JR, Nonintersecting paths, Pfaffians, and plane partitions, Adv. Math., 83, 96-131 (1990) · Zbl 0790.05007 · doi:10.1016/0001-8708(90)90070-4
[78] Stéphan, JM, Free fermions at the edge of interacting systems, SciPost Phys., 6, 057 (2019) · doi:10.21468/SciPostPhys.6.5.057
[79] Takeuchi, K.A., Sano, M.: Universal fluctuations of growing interfaces: evidence in turbulent liquid crystals. Phys. Rev. Lett. (23), 230601 (2010)
[80] Takeuchi, KA; Sano, M.; Sasamoto, T.; Spohn, H., Growing interfaces uncover universal fluctuations behind scale invariance, Sci. Rep., 1, 34 (2011) · doi:10.1038/srep00034
[81] Tracy, CA; Widom, H., Level-spacing distributions and the Airy kernel, Commun. Math. Phys., 159, 1, 151-174 (1994) · Zbl 0789.35152 · doi:10.1007/BF02100489
[82] Tracy, CA; Widom, H., On orthogonal and symplectic matrix ensembles, Commun. Math. Phys., 177, 3, 727-754 (1996) · Zbl 0851.60101 · doi:10.1007/BF02099545
[83] Tracy, CA; Widom, H., Correlation functions, cluster functions, and spacing distributions for random matrices, J. Stat. Phys., 92, 5, 809-835 (1998) · Zbl 0942.60099 · doi:10.1023/A:1023084324803
[84] Witte, N.; Bornemann, F.; Forrester, P., Joint distribution of the first and second eigenvalues at the soft edge of unitary ensembles, Nonlinearity, 26, 6, 1799 (2013) · Zbl 1283.15114 · doi:10.1088/0951-7715/26/6/1799
[85] Witte, N.; Forrester, P., On the variance of the index for the Gaussian unitary ensemble, Random Matrices Theory Appl., 1, 4, 1250010 (2012) · Zbl 1268.15034 · doi:10.1142/S2010326312500104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.