×

Fast approach to the tracy-widom law at the edge of GOE and GUE. (English) Zbl 1253.60029

Summary: We study the rate of convergence for the largest eigenvalue distributions in the Gaussian unitary and orthogonal ensembles to their Tracy-Widom limits. We show that one can achieve an \(O(N^{-2/3})\) rate with particular choices of the centering and scaling constants. The arguments here also shed light on more complicated cases of Laguerre and Jacobi ensembles, in both unitary and orthogonal versions. Numerical work shows that the suggested constants yield reasonable approximations, even for surprisingly small values of \(N\).

MSC:

60F05 Central limit and other weak theorems
60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)

References:

[1] Adler, M., Forrester, P. J., Nagao, T. and van Moerbeke, P. (2000). Classical skew orthogonal polynomials and random matrices. J. Stat. Phys. 99 141-170. · Zbl 0989.82020 · doi:10.1023/A:1018644606835
[2] Anderson, G. W., Guionnet, A. and Zeitouni, O. (2010). An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118 . Cambridge Univ. Press, Cambridge. · Zbl 1184.15023
[3] Bornemann, F. (2010). On the numerical evaluation of distributions in random matrix theory: A review. Markov Process. Related Field 16 803-866. · Zbl 1222.60013
[4] Choup, L. N. (2006). Edgeworth expansion of the largest eigenvalue distribution function of GUE and LUE. Int. Math. Res. Not. Art. ID 61049, 32. · Zbl 1184.15023
[5] Choup, L. N. (2008). Edgeworth expansion of the largest eigenvalue distribution function of Gaussian unitary ensemble revisited. J. Math. Phys. 49 033508, 16. · Zbl 1153.81343 · doi:10.1063/1.2873345
[6] Choup, L. N. (2009). Edgeworth expansion of the largest eigenvalue distribution function of Gaussian orthogonal ensemble. J. Math. Phys. 50 013512, 22. · Zbl 1200.82029 · doi:10.1063/1.3046561
[7] El Karoui, N. (2006). A rate of convergence result for the largest eigenvalue of complex white Wishart matrices. Ann. Probab. 34 2077-2117. · Zbl 1108.62014 · doi:10.1214/009117906000000502
[8] Forrester, P. J. and Mays, A. (2009). A method to calculate correlation functions for \(\beta=1\) random matrices of odd size. J. Stat. Phys. 134 443-462. · Zbl 1172.82010 · doi:10.1007/s10955-009-9684-6
[9] Johnstone, I. M. (2008). Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy-Widom limits and rates of convergence. Ann. Statist. 36 2638-2716. · Zbl 1284.62320 · doi:10.1214/08-AOS605
[10] Johnstone, I. M. (2009). Approximate null distribution of the largest root in multivariate analysis. Ann. Appl. Stat. 3 1616-1633. · Zbl 1184.62083 · doi:10.1214/08-AOAS220
[11] Ma, Z. (2012). Accuracy of the Tracy-Widom limits for the extreme eigenvalues in white Wishart matrices. Bernoulli 18 322-359. · Zbl 1248.60010 · doi:10.3150/10-BEJ334
[12] Olver, F. W. J. (1974). Asymptotics and Special Functions . Academic Press, New York-London. · Zbl 0303.41035
[13] Péché, S. (2009). Universality results for the largest eigenvalues of some sample covariance matrix ensembles. Probab. Theory Related Fields 143 481-516. · Zbl 1167.62019 · doi:10.1007/s00440-007-0133-7
[14] Seiler, E. and Simon, B. (1975). An inequality among determinants. Proc. Natl. Acad. Sci. USA 72 3277-3278. · Zbl 0313.47011 · doi:10.1073/pnas.72.9.3277
[15] Shi, W. (2008). A globally uniform asymptotic expansion of the Hermite polynomials. Acta Math. Sci. Ser. B Engl. Ed. 28 834-842. · Zbl 1199.41178 · doi:10.1016/S0252-9602(08)60084-3
[16] Sinclair, C. D. (2009). Correlation functions for \(\beta=1\) ensembles of matrices of odd size. J. Stat. Phys. 136 17-33. · Zbl 1220.82066 · doi:10.1007/s10955-009-9771-8
[17] Soshnikov, A. (2002). A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. J. Stat. Phys. 108 1033-1056. · Zbl 1018.62042 · doi:10.1023/A:1019739414239
[18] Szegő, G. (1967). Orthogonal Polynomials , 3rd ed. Amer. Math. Soc., Providence, RI.
[19] Tao, T. and Vu, V. (2010). Random matrices: Universality of local eigenvalue statistics up to the edge. Comm. Math. Phys. 298 549-572. · Zbl 1018.62042 · doi:10.1023/A:1019739414239
[20] Tracy, C. A. and Widom, H. (1994). Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 151-174. · Zbl 0789.35152 · doi:10.1007/BF02100489
[21] Tracy, C. A. and Widom, H. (1996). On orthogonal and symplectic matrix ensembles. Comm. Math. Phys. 177 727-754. · Zbl 0851.60101 · doi:10.1007/BF02099545
[22] Tracy, C. A. and Widom, H. (1998). Correlation functions, cluster functions, and spacing distributions for random matrices. J. Stat. Phys. 92 809-835. · Zbl 0942.60099 · doi:10.1023/A:1023084324803
[23] Tracy, C. A. and Widom, H. (2005). Matrix kernels for the Gaussian orthogonal and symplectic ensembles. Ann. Inst. Fourier ( Grenoble ) 55 2197-2207. · Zbl 1084.60022 · doi:10.5802/aif.2158
[24] Wang, X. S. and Wong, R. (2011). Asymptotics of orthogonal polynomials via recurrence relations. Technical report. Available at . 1101.4371 · Zbl 1242.41035 · doi:10.1142/S0219530512500108
[25] Wong, R. and Zhang, L. (2007). Global asymptotics of Hermite polynomials via Riemann-Hilbert approach. Discrete Contin. Dyn. Syst. Ser. B 7 661-682 (electronic). · Zbl 1124.33013 · doi:10.3934/dcdsb.2007.7.661
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.