×

Topology and Wilson lines: global aspects of the double copy. (English) Zbl 1451.83006

Summary: The Kerr-Schild double copy relates exact solutions of gauge and gravity theories. In all previous examples, the gravity solution is associated with an abelian-like gauge theory object, which linearises the Yang-Mills equations. This appears to be at odds with the double copy for scattering amplitudes, in which the non-abelian nature of the gauge theory plays a crucial role. Furthermore, it is not yet clear whether or not global properties of classical fields — such as non-trivial topology — can be matched between gauge and gravity theories. In this paper, we clarify these issues by explicitly demonstrating how magnetic monopoles associated with arbitrary gauge groups can be double copied to the same solution (the pure NUT metric) in gravity. We further describe how to match up topological information on both sides of the double copy correspondence, independently of the nature of the gauge group. This information is neatly expressed in terms of Wilson line operators, and we argue through specific examples that they provide a useful bridge between the classical double copy and the BCJ double copy for scattering amplitudes.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
81U05 \(2\)-body potential quantum scattering theory
53Z05 Applications of differential geometry to physics

References:

[1] Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
[2] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
[3] Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].
[4] Bern, Z.; Dixon, LJ; Dunbar, DC; Perelstein, M.; Rozowsky, JS, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys. B, 530, 401 (1998)
[5] Green, MB; Schwarz, JH; Brink, L., N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys. B, 198, 474 (1982)
[6] Z. Bern, J.S. Rozowsky and B. Yan, Two loop four gluon amplitudes in N = 4 superYang-Mills, Phys. Lett. B401 (1997) 273 [hep-ph/9702424] [INSPIRE].
[7] J.J.M. Carrasco and H. Johansson, Five-point amplitudes in N = 4 Super-Yang-Mills theory and N = 8 supergravity, Phys. Rev. D85 (2012) 025006 [arXiv:1106.4711] [INSPIRE].
[8] J.J.M. Carrasco, M. Chiodaroli, M. Günaydin and R. Roiban, One-loop four-point amplitudes in pure and matter-coupled N ≤ 4 supergravity, JHEP03 (2013) 056 [arXiv:1212.1146] [INSPIRE]. · Zbl 1342.83455
[9] Mafra, CR; Schlotterer, O., The structure of n-point one-loop open superstring amplitudes, JHEP, 08, 099 (2014)
[10] Boels, RH; Isermann, RS; Monteiro, R.; O’Connell, D., Colour-kinematics duality for one-loop rational amplitudes, JHEP, 04, 107 (2013)
[11] Bjerrum-Bohr, NEJ; Dennen, T.; Monteiro, R.; O’Connell, D., Integrand oxidation and one-loop colour-dual numerators in N = 4 gauge theory, JHEP, 07, 092 (2013) · Zbl 1342.81261
[12] Z. Bern et al., Color-kinematics duality for pure Yang-Mills and gravity at one and two loops, Phys. Rev. D92 (2015) 045041 [arXiv:1303.6605] [INSPIRE].
[13] Z. Bern, S. Davies and T. Dennen, The ultraviolet structure of half-maximal supergravity with matter multiplets at two and three loops, Phys. Rev. D88 (2013) 065007 [arXiv:1305.4876] [INSPIRE].
[14] J. Nohle, Color-kinematics duality in one-loop four-gluon amplitudes with matter, Phys. Rev. D90 (2014) 025020 [arXiv:1309.7416] [INSPIRE].
[15] Bern, Z., Ultraviolet properties of N = 4 supergravity at four loops, Phys. Rev. Lett., 111, 231302 (2013)
[16] Naculich, SG; Nastase, H.; Schnitzer, HJ, All-loop infrared-divergent behavior of most-subleading-color gauge-theory amplitudes, JHEP, 04, 114 (2013) · Zbl 1342.81606
[17] Du, Y-J; Feng, B.; Fu, C-H, Dual-color decompositions at one-loop level in Yang-Mills theory, JHEP, 06, 157 (2014)
[18] Mafra, CR; Schlotterer, O., Towards one-loop SYM amplitudes from the pure spinor BRST cohomology, Fortsch. Phys., 63, 105 (2015) · Zbl 1338.81291
[19] Bern, Z.; Davies, S.; Dennen, T., Enhanced ultraviolet cancellations in \(\mathcal{N} = 5\) supergravity at four loops, Phys. Rev. D, 90, 105011 (2014)
[20] Mafra, CR; Schlotterer, O., Two-loop five-point amplitudes of super Yang-Mills and supergravity in pure spinor superspace, JHEP, 10, 124 (2015) · Zbl 1388.83860
[21] He, S.; Monteiro, R.; Schlotterer, O., String-inspired BCJ numerators for one-loop MHV amplitudes, JHEP, 01, 171 (2016) · Zbl 1388.81544
[22] Bern, Z.; Davies, S.; Nohle, J., Double-copy constructions and unitarity cuts, Phys. Rev. D, 93, 105015 (2016)
[23] Mogull, G.; O’Connell, D., Overcoming obstacles to colour-kinematics duality at two loops, JHEP, 12, 135 (2015) · Zbl 1388.81868
[24] M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Spontaneously broken Yang-Mills-Einstein supergravities as double copies, JHEP06 (2017) 064 [arXiv:1511.01740] [INSPIRE]. · Zbl 1380.83279
[25] Bern, Z., Five-loop four-point integrand of N = 8 supergravity as a generalized double copy, Phys. Rev. D, 96, 126012 (2017)
[26] Johansson, H.; Ochirov, A., Color-kinematics duality for QCD amplitudes, JHEP, 01, 170 (2016) · Zbl 1390.81697
[27] Oxburgh, S.; White, CD, BCJ duality and the double copy in the soft limit, JHEP, 02, 127 (2013) · Zbl 1342.81719
[28] White, CD, Factorization properties of soft graviton amplitudes, JHEP, 05, 060 (2011) · Zbl 1296.83030
[29] S. Melville, S.G. Naculich, H.J. Schnitzer and C.D. White, Wilson line approach to gravity in the high energy limit, Phys. Rev. D89 (2014) 025009 [arXiv:1306.6019] [INSPIRE].
[30] Luna, A.; Melville, S.; Naculich, SG; White, CD, Next-to-soft corrections to high energy scattering in QCD and gravity, JHEP, 01, 052 (2017) · Zbl 1373.83045
[31] Saotome, R.; Akhoury, R., Relationship between gravity and gauge scattering in the high energy limit, JHEP, 01, 123 (2013)
[32] Sabio Vera, A.; Serna Campillo, E.; Vazquez-Mozo, MA, Color-kinematics duality and the Regge limit of inelastic amplitudes, JHEP, 04, 086 (2013)
[33] H. Johansson, A. Sabio Vera, E. Serna Campillo and M.A. Vázquez-Mozo, Color-kinematics duality in multi-Regge kinematics and dimensional reduction, JHEP10 (2013) 215 [arXiv:1307.3106] [INSPIRE].
[34] H. Johansson, A. Sabio Vera, E. Serna Campillo and M.A. Vazquez-Mozo, Color-kinematics duality and dimensional reduction for graviton emission in Regge limit, arXiv:1310.1680 [INSPIRE].
[35] Bargheer, T.; He, S.; McLoughlin, T., New relations for three-dimensional supersymmetric scattering amplitudes, Phys. Rev. Lett., 108, 231601 (2012)
[36] Huang, Y-t; Johansson, H., Equivalent D = 3 supergravity amplitudes from double copies of three-algebra and two-algebra gauge theories, Phys. Rev. Lett., 110, 171601 (2013)
[37] Chen, G.; Du, Y-J, Amplitude relations in non-linear σ-model, JHEP, 01, 061 (2014) · Zbl 1390.81194
[38] Chiodaroli, M.; Jin, Q.; Roiban, R., Color/kinematics duality for general abelian orbifolds of N = 4 super Yang-Mills theory, JHEP, 01, 152 (2014) · Zbl 1333.81391
[39] Johansson, H.; Ochirov, A., Pure gravities via color-kinematics duality for fundamental matter, JHEP, 11, 046 (2015) · Zbl 1388.83017
[40] H. Johansson and J. Nohle, Conformal gravity from gauge theory, arXiv:1707.02965 [INSPIRE].
[41] M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Gauged supergravities and spontaneous supersymmetry breaking from the double copy construction, Phys. Rev. Lett.120 (2018) 171601 [arXiv:1710.08796] [INSPIRE].
[42] Chen, G.; Johansson, H.; Teng, F.; Wang, T., On the kinematic algebra for BCJ numerators beyond the MHV sector, JHEP, 11, 055 (2019)
[43] Cheung, C.; Remmen, GN, Entanglement and the double copy, JHEP, 05, 100 (2020) · Zbl 1437.83036
[44] Monteiro, R.; O’Connell, D.; White, CD, Black holes and the double copy, JHEP, 12, 056 (2014) · Zbl 1333.83048
[45] Luna, A.; Monteiro, R.; O’Connell, D.; White, CD, The classical double copy for Taub-NUT spacetime, Phys. Lett. B, 750, 272 (2015) · Zbl 1364.83005
[46] Luna, A., The double copy: Bremsstrahlung and accelerating black holes, JHEP, 06, 023 (2016) · Zbl 1388.83025
[47] Goldberger, WD; Ridgway, AK, Radiation and the classical double copy for color charges, Phys. Rev. D, 95, 125010 (2017)
[48] Anastasiou, A., Yang-Mills origin of gravitational symmetries, Phys. Rev. Lett., 113, 231606 (2014)
[49] Borsten, L.; Duff, MJ, Gravity as the square of Yang-Mills?, Phys. Scripta, 90, 108012 (2015)
[50] A. Anastasiou et al., Twin supergravities from Yang-Mills theory squared, Phys. Rev. D96 (2017) 026013 [arXiv:1610.07192] [INSPIRE].
[51] Anastasiou, A., Are all supergravity theories Yang-Mills squared?, Nucl. Phys. B, 934, 606 (2018) · Zbl 1395.83116
[52] Cardoso, GL; Nagy, S.; Nampuri, S., A double copy for \(\mathcal{N} = 2\) supergravity: a linearised tale told on-shell, JHEP, 10, 127 (2016) · Zbl 1390.83383
[53] L. Borsten, \(D = 6, \mathcal{N} \) = (2, 0) and \(\mathcal{N} \) = (4, 0) theories, Phys. Rev. D97 (2018) 066014 [arXiv:1708.02573] [INSPIRE].
[54] Anastasiou, A., The Mile High Magic Pyramid, Contemp. Math., 721, 1 (2019) · Zbl 1423.83089
[55] Anastasiou, A., Gravity as gauge theory squared: a ghost story, Phys. Rev. Lett., 121, 211601 (2018)
[56] G. Lopes Cardoso, G. Inverso, S. Nagy and S. Nampuri, Comments on the double copy construction for gravitational theories, PoS(CORFU2017)177 [arXiv:1803.07670] [INSPIRE].
[57] W.D. Goldberger, S.G. Prabhu and J.O. Thompson, Classical gluon and graviton radiation from the bi-adjoint scalar double copy, Phys. Rev. D96 (2017) 065009 [arXiv:1705.09263] [INSPIRE].
[58] W.D. Goldberger and A.K. Ridgway, Bound states and the classical double copy, Phys. Rev. D97 (2018) 085019 [arXiv:1711.09493] [INSPIRE].
[59] Goldberger, WD; Li, J.; Prabhu, SG, Spinning particles, axion radiation and the classical double copy, Phys. Rev. D, 97, 105018 (2018)
[60] Luna, A., Perturbative spacetimes from Yang-Mills theory, JHEP, 04, 069 (2017) · Zbl 1378.83012
[61] Luna, A.; Nicholson, I.; O’Connell, D.; White, CD, Inelastic black hole scattering from charged scalar amplitudes, JHEP, 03, 044 (2018) · Zbl 1388.83477
[62] Shen, C-H, Gravitational radiation from color-kinematics duality, JHEP, 11, 162 (2018) · Zbl 1404.83022
[63] M. Levi, Effective field theories of post-newtonian gravity: a comprehensive review, Rept. Prog. Phys.83 (2020) 075901 [arXiv:1807.01699] [INSPIRE].
[64] J. Plefka, J. Steinhoff and W. Wormsbecher, Effective action of dilaton gravity as the classical double copy of Yang-Mills theory, Phys. Rev. D99 (2019) 024021 [arXiv:1807.09859] [INSPIRE].
[65] Cheung, C.; Rothstein, IZ; Solon, MP, From scattering amplitudes to classical potentials in the post-Minkowskian expansion, Phys. Rev. Lett., 121, 251101 (2018)
[66] M. Carrillo González, R. Penco and M. Trodden, Radiation of scalar modes and the classical double copy, JHEP11 (2018) 065 [arXiv:1809.04611] [INSPIRE]. · Zbl 1404.81166
[67] R. Monteiro, I. Nicholson and D. O’Connell, Spinor-helicity and the algebraic classification of higher-dimensional spacetimes, Class. Quant. Grav.36 (2019) 065006 [arXiv:1809.03906] [INSPIRE]. · Zbl 1476.83145
[68] J. Plefka, C. Shi, J. Steinhoff and T. Wang, Breakdown of the classical double copy for the effective action of dilaton-gravity at NNLO, Phys. Rev. D100 (2019) 086006 [arXiv:1906.05875] [INSPIRE].
[69] Maybee, B.; O’Connell, D.; Vines, J., Observables and amplitudes for spinning particles and black holes, JHEP, 12, 156 (2019) · Zbl 1431.83101
[70] Johansson, H.; Ochirov, A., Double copy for massive quantum particles with spin, JHEP, 09, 040 (2019) · Zbl 1423.81183
[71] A.P.V. and A. Manu, Classical double copy from color kinematics duality: a proof in the soft limit, Phys. Rev. D101 (2020) 046014 [arXiv:1907.10021] [INSPIRE].
[72] M. Carrillo González, R. Penco and M. Trodden, Shift symmetries, soft limits and the double copy beyond leading order, arXiv:1908.07531 [INSPIRE]. · Zbl 1404.81166
[73] Y.F. Bautista and A. Guevara, On the double copy for spinning matter, arXiv:1908.11349 [INSPIRE].
[74] Moynihan, N., Kerr-Newman from minimal coupling, JHEP, 01, 014 (2020) · Zbl 1434.83071
[75] Bah, I.; Dempsey, R.; Weck, P., Kerr-Schild double copy and complex worldlines, JHEP, 20, 180 (2020) · Zbl 1435.83070
[76] M. Carrillo González et al., The classical double copy in three spacetime dimensions, JHEP07 (2019) 167 [arXiv:1904.11001] [INSPIRE]. · Zbl 1418.83025
[77] Goldberger, WD; Li, J., Strings, extended objects and the classical double copy, JHEP, 02, 092 (2020) · Zbl 1435.83176
[78] Kim, K.; Lee, K.; Monteiro, R.; Nicholson, I.; Peinador Veiga, D., The classical double copy of a point charge, JHEP, 02, 046 (2020) · Zbl 1444.83009
[79] A. Banerjee, E. Colgáin, J.A. Rosabal and H. Yavartanoo, Ehlers as EM duality in the double copy, arXiv:1912.02597 [INSPIRE].
[80] N. Moynihan and J. Murugan, On-shell electric-magnetic duality and the dual graviton, arXiv:2002.11085 [INSPIRE].
[81] A. Luna, R. Monteiro, I. Nicholson and D. O’Connell, Type D spacetimes and the Weyl double copy, Class. Quant. Grav.36 (2019) 065003 [arXiv:1810.08183] [INSPIRE]. · Zbl 1476.83027
[82] White, CD, Exact solutions for the biadjoint scalar field, Phys. Lett. B, 763, 365 (2016) · Zbl 1370.70053
[83] De Smet, P-J; White, CD, Extended solutions for the biadjoint scalar field, Phys. Lett. B, 775, 163 (2017) · Zbl 1380.81227
[84] N. Bahjat-Abbas, R. Stark-Muchão and C.D. White, Biadjoint wires, Phys. Lett. B788 (2019) 274 [arXiv:1810.08118] [INSPIRE]. · Zbl 1405.81071
[85] N. Bahjat-Abbas, R. Stark-Muchão and C.D. White, Monopoles, shockwaves and the classical double copy, JHEP04 (2020) 102 [arXiv:2001.09918] [INSPIRE]. · Zbl 1436.83014
[86] D.S. Berman, E. Chacón, A. Luna and C.D. White, The self-dual classical double copy and the Eguchi-Hanson instanton, JHEP01 (2019) 107 [arXiv:1809.04063] [INSPIRE]. · Zbl 1409.83137
[87] Taub, AH, Empty space-times admitting a three parameter group of motions, Ann. Math., 53, 472 (1951) · Zbl 0044.22804
[88] Newman, E.; Tamburino, L.; Unti, T., Empty space generalization of the Schwarzschild metric, J. Math. Phys., 4, 915 (1963) · Zbl 0115.43305
[89] Bossard, G.; Nicolai, H.; Stelle, KS, Gravitational multi-NUT solitons, Komar masses and charges, Gen. Rel. Grav., 41, 1367 (2009) · Zbl 1177.83064
[90] Stephani, H., Exact solutions of Einstein’s field equations (2009), Cambridge U.K.: Cambridge University Press, Cambridge U.K. · Zbl 1179.83005
[91] M. Carrillo-González, R. Penco and M. Trodden, The classical double copy in maximally symmetric spacetimes, JHEP04 (2018) 028 [arXiv:1711.01296] [INSPIRE]. · Zbl 1390.81624
[92] Z.W. Chong, G.W. Gibbons, H. Lü and C.N. Pope, Separability and Killing tensors in Kerr-Taub-NUT-de Sitter metrics in higher dimensions, Phys. Lett. B609 (2005) 124 [hep-th/0405061] [INSPIRE]. · Zbl 1247.83168
[93] Wu, TT; Yang, CN, Concept of nonintegrable phase factors and global formulation of gauge fields, Phys. Rev. D, 12, 3845 (1975)
[94] E.J. Weinberg, Classical solutions in quantum field theory, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge U.K. (2012). · Zbl 1264.81009
[95] Chan, H-M; Tsou, ST, Some elementary gauge theory concepts, World Sci. Lect. Notes Phys., 47, 1 (1993) · Zbl 0862.53054
[96] Goddard, P.; Nuyts, J.; Olive, DI, Gauge theories and magnetic charge, Nucl. Phys., B 125, 1 (1977)
[97] Georgi, H., Lie algebras in particle physics, Front. Phys., 54, 1 (1999)
[98] Brandt, RA; Neri, F., Stability analysis for singular nonabelian magnetic monopoles, Nucl. Phys. B, 161, 253 (1979)
[99] L.M. Woodward, The classification of principal pun-bundles over a 4-complex, J. London Math. Soc.s2-25 (1982) 513, · Zbl 0495.55005
[100] T. Ortín, Gravity and strings, Cambridge University Press, Cambridge U.K. (2004). · Zbl 1057.83003
[101] Alawadhi, R.; Berman, DS; Spence, B.; Peinador Veiga, D., S-duality and the double copy, JHEP, 03, 059 (2020) · Zbl 1435.81225
[102] Y.-T. Huang, U. Kol and D. O’Connell, The double copy of electric-magnetic duality, arXiv:1911.06318 [INSPIRE].
[103] Misner, CW, The flatter regions of Newman, Unti, and Tamburino’s generalized schwarzschild space, J. Math. Phys., 4, 924 (1963)
[104] Hurst, C., Charge quantization and nonintegrable Lie algebras, Ann. Phys., 50, 51 (1968) · Zbl 0162.58202
[105] Dowker, J., The NUT solution as a gravitational dyon, Gen. Rel. Grav., 5, 603 (1974)
[106] L.D. Landau and E.M. Lifschits, The classical theory of fields, Course of Theoretical Physics volume 2, Pergamon Press, Oxford U.K. (1975).
[107] P.A.M. Dirac, Quantised singularities in the electromagnetic field,, Proc. Roy. Soc. Lond. AA 133 (1931) 60 [INSPIRE]. · Zbl 0002.30502
[108] Dowker, JS; Roche, JA, The gravitational analogues of magnetic monopoles, Proc. Phys. Soc., 92, 1 (1967)
[109] Kol, U.; Porrati, M., Gravitational Wu-Yang monopoles, Phys. Rev. D, 101, 126009 (2020)
[110] H. Godazgar, M. Godazgar and C.N. Pope, New dual gravitational charges, Phys. Rev. D99 (2019) 024013 [arXiv:1812.01641] [INSPIRE]. · Zbl 1427.83015
[111] U. Kol and M. Porrati, Properties of dual supertranslation charges in asymptotically flat spacetimes, Phys. Rev. D100 (2019) 046019 [arXiv:1907.00990] [INSPIRE].
[112] Mandelstam, S., Quantization of the gravitational field, Annals Phys., 19, 25 (1962) · Zbl 0109.20905
[113] Modanese, G., Wilson loops in four-dimensional quantum gravity, Phys. Rev. D, 49, 6534 (1994)
[114] H.W. Hamber and R.M. Williams, Gravitational Wilson loop in discrete quantum gravity, Phys. Rev. D81 (2010) 084048 [arXiv:0907.2652] [INSPIRE].
[115] Brandhuber, A., Four-point amplitudes in N = 8 supergravity and Wilson loops, Nucl. Phys. B, 807, 290 (2009) · Zbl 1192.83064
[116] W. Donnelly and S.B. Giddings, Diffeomorphism-invariant observables and their nonlocal algebra, Phys. Rev. D93 (2016) 024030 [Erratum ibid.94 (2016) 029903] [arXiv:1507.07921] [INSPIRE].
[117] Naculich, SG; Schnitzer, HJ, Eikonal methods applied to gravitational scattering amplitudes, JHEP, 05, 087 (2011) · Zbl 1296.83028
[118] Miller, DJ; White, CD, The gravitational cusp anomalous dimension from AdS space, Phys. Rev. D, 85, 104034 (2012)
[119] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 1: introduction, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (1988).
[120] Weinberg, S., Infrared photons and gravitons, Phys. Rev., 140, B516 (1965)
[121] Akhoury, R.; Saotome, R.; Sterman, G., Collinear and soft divergences in perturbative quantum gravity, Phys. Rev. D, 84, 104040 (2011)
[122] Beneke, M.; Kirilin, G., Soft-collinear gravity, JHEP, 09, 066 (2012) · Zbl 1398.83031
[123] Gardi, E.; Magnea, L., Infrared singularities in QCD amplitudes, Frascati Phys. Ser., 50, 137 (2010)
[124] C.D. White, An introduction to webs, J. Phys. G43 (2016) 033002 [arXiv:1507.02167] [INSPIRE].
[125] Bern, Z.; Grant, AK, Perturbative gravity from QCD amplitudes, Phys. Lett. B, 457, 23 (1999)
[126] I.A. Korchemskaya and G.P. Korchemsky, High-energy scattering in QCD and cross singularities of Wilson loops, Nucl. Phys. B437 (1995) 127 [hep-ph/9409446] [INSPIRE].
[127] I.A. Korchemskaya and G.P. Korchemsky, Evolution equation for gluon Regge trajectory, Phys. Lett. B387 (1996) 346 [hep-ph/9607229] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.