×

Enhanced total variation minimization for stable image reconstruction. (English) Zbl 1518.94004

In this paper, a combination of a backward diffusion process and a total variation regularization method (“enhanced TV model”) is proposed in order to obtain an image reconstruction method that reduces the loss of contrasts. Some details of the mathematics necessary to understand the statements and proofs of results underlying the proposed method are presented. To fully understand the mathematics of this paper it is necessary to be familiar with concepts and results stated in earlier papers by other authors, as cited in this paper. Detailed and rigorous proofs of the theoretical properties of the new method are provided. The authors show the advantages of the new method through preliminary experiments on some synthetic, real, and medical images. This proposed method’s effectiveness is compared with that obtained by two previous methods also based on total variation models, using eight images, four synthetic, two real, and two medical images. As the authors themselves put it “it is worth noting that the enhanced TV model may not perform as effectively for natural images as it does for the images (in the other examples)”, possibly because the edges of objects in real images are not piecewise constant, in general, or other complications. All data for the examples presented are available. Four appendices conclude the paper, which helps to understand the theory underlying the new proposal and its subsequent computer implementation. Reference lists are extensive, detailed, and up-to-date (only 9 of the 73 papers cited are prior to 2000).

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing
60G35 Signal detection and filtering (aspects of stochastic processes)
60H50 Regularization by noise
60J60 Diffusion processes

References:

[1] Adcock, B.; Dexter, N.; Xu, Q., Improved recovery guarantees and sampling strategies for TV minimization in compressive imaging, SIAM J. Imaging Sci., 14, 1149-83 (2021) · Zbl 1479.94008 · doi:10.1137/20M136788X
[2] Adcock, B.; Hansen, A. C.; Poon, C.; Roman, B., Breaking the coherence barrier: a new theory for compressed sensing, Forum Math. Sigma, 5, e4 (2017) · Zbl 1410.94030 · doi:10.1017/fms.2016.32
[3] Alvarez, L.; Mazorra, L., Signal and image restoration using shock filters and anisotropic diffusion, SIAM J. Numer. Anal., 31, 590-605 (1994) · Zbl 0804.65130 · doi:10.1137/0731032
[4] An, C.; Wu, H-N; Yuan, X., The springback penalty for robust signal recovery, Appl. Comput. Harmon. Anal., 61, 319-46 (2022) · Zbl 1496.94010 · doi:10.1016/j.acha.2022.07.002
[5] Benning, M.; Brune, C.; Burger, M.; Müller, J., Higher-order TV methods—enhancement via Bregman iteration, J. Sci. Comput., 54, 269-310 (2013) · Zbl 1308.94012 · doi:10.1007/s10915-012-9650-3
[6] Bi, N.; Tang, W-S, A necessary and sufficient condition for sparse vector recovery via \(####\) minimization, Appl. Comput. Harmon. Anal., 56, 337-50 (2022) · Zbl 1485.90095 · doi:10.1016/j.acha.2021.09.003
[7] Blomgren, P.; Chan, T. F.; Mulet, P.; Wong, C-K, Total variation image restoration: numerical methods and extensions, 384-7 (1997), IEEE · doi:10.1109/ICIP.1997.632128
[8] Bredies, K.; Kunisch, K.; Pock, T., Total generalized variation, SIAM J. Imaging Sci., 3, 492-526 (2010) · Zbl 1195.49025 · doi:10.1137/090769521
[9] Cai, J-F; Xu, W., Guarantees of total variation minimization for signal recovery, Inf. Inference J. IMA, 4, 328-53 (2015) · Zbl 1387.94028 · doi:10.1093/imaiai/iav009
[10] Candès, E. J.; Romberg, J.; Tao, T., Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, 52, 489-509 (2006) · Zbl 1231.94017 · doi:10.1109/TIT.2005.862083
[11] Candès, E. J.; Tao, T., Decoding by linear programming, IEEE Trans. Inf. Theory, 51, 4203-15 (2005) · Zbl 1264.94121 · doi:10.1109/TIT.2005.858979
[12] Candès, E. J.; Tao, T., Near-optimal signal recovery from random projections: universal encoding strategies?, IEEE Trans. Inf. Theory, 52, 5406-25 (2006) · Zbl 1309.94033 · doi:10.1109/TIT.2006.885507
[13] Chambolle, A., An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20, 89-97 (2004) · Zbl 1366.94048 · doi:10.1023/B:JMIV.0000011321.19549.88
[14] Chambolle, A., Total variation minimization and a class of binary MRF models, 136-52 (2005), Berlin: Springer, Berlin · doi:10.1007/11585978_10
[15] Chambolle, A.; Caselles, V.; Cremers, D.; Novaga, M.; Pock, T., An introduction to total variation for image analysis, Theoretical Foundations and Numerical Methods for Sparse Recovery, 263-340 (2010), Berlin: De Gruyter, Berlin · Zbl 1209.94004 · doi:10.1515/9783110226157.263
[16] Chambolle, A.; Lions, P-L, Image recovery via total variation minimization and related problems, Numer. Math., 76, 167-88 (1997) · Zbl 0874.68299 · doi:10.1007/s002110050258
[17] Chambolle, A.; Pock, T., An introduction to continuous optimization for imaging, Acta Numer., 25, 161-319 (2016) · Zbl 1343.65064 · doi:10.1017/S096249291600009X
[18] Chambolle, A.; Pock, T., Approximating the total variation with finite differences or finite elements, Handbook of Numerical Analysis, vol 22, 383-417 (2021), Amsterdam: Elsevier, Amsterdam · Zbl 1491.65046 · doi:10.1016/bs.hna.2020.10.005
[19] Chambolle, A.; Pock, T., Learning consistent discretizations of the total variation, SIAM J. Imaging Sci., 14, 778-813 (2021) · Zbl 1477.49047 · doi:10.1137/20M1377199
[20] Chan, T. F.; Marquina, A.; Mulet, P., High-order total variation-based image restoration, SIAM J. Sci. Comput., 22, 503-16 (2000) · Zbl 0968.68175 · doi:10.1137/S1064827598344169
[21] Chartrand, R., Exact reconstruction of sparse signals via nonconvex minimization, IEEE Signal Process. Lett., 14, 707-10 (2007) · doi:10.1109/LSP.2007.898300
[22] Conway, J. H.; Guy, R. K., The Book of Numbers (1996), New York: Copernicus, New York · Zbl 0866.00001 · doi:10.1007/978-1-4612-4072-3
[23] Donoho, D. L., Compressed sensing, IEEE Trans. Inf. Theory, 52, 1289-306 (2006) · Zbl 1288.94016 · doi:10.1109/TIT.2006.871582
[24] Esedoḡlu, S.; Osher, S., Decomposition of images by the anisotropic Rudin-Osher-Fatemi model, Commun. Pure Appl. Math., 57, 1609-26 (2004) · Zbl 1083.49029 · doi:10.1002/cpa.20045
[25] Fan, J.; Li, R., Variable selection via nonconcave penalized likelihood and its oracle properties, J. Am. Stat. Assoc., 96, 1348-60 (2001) · Zbl 1073.62547 · doi:10.1198/016214501753382273
[26] Fannjiang, A. C.; Strohmer, T.; Yan, P., Compressed remote sensing of sparse objects, SIAM J. Imaging Sci., 3, 595-618 (2010) · Zbl 1201.45017 · doi:10.1137/090757034
[27] Foucart, S.; Lai, M-J, Sparsest solutions of underdetermined linear systems via \(####\)-minimization for \(####\), Appl. Comput. Harmon. Anal., 26, 395-407 (2009) · Zbl 1171.90014 · doi:10.1016/j.acha.2008.09.001
[28] Galdran, A.; Vazquez-Corral, J.; Pardo, D.; Bertalmio, M., Enhanced variational image dehazing, SIAM J. Imaging Sci., 8, 1519-46 (2015) · Zbl 1341.94004 · doi:10.1137/15M1008889
[29] Ge, H.; Li, P., The Dantzig selector: recovery of signal via \(####\) minimization, Inverse Problems, 38 (2021) · Zbl 1479.94063 · doi:10.1088/1361-6420/ac39f8
[30] Gilboa, G.; Sochen, N.; Zeevi, Y. Y., Forward-and-backward diffusion processes for adaptive image enhancement and denoising, IEEE Trans. Image Process., 11, 689-703 (2002) · doi:10.1109/TIP.2002.800883
[31] Glowinski, R.; Marrocco, A., Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires, Rev. Fr. Autom. Inform. Rech. Oper., 9, 41-76 (1975) · Zbl 0368.65053 · doi:10.1051/m2an/197509R200411
[32] Goldstein, T.; Osher, S., The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2, 323-43 (2009) · Zbl 1177.65088 · doi:10.1137/080725891
[33] Huo, L.; Chen, W.; Ge, H.; Ng, M. K., Stable image reconstruction using transformed total variation minimization, SIAM J. Imaging Sci., 15, 1104-39 (2022) · Zbl 1492.94020 · doi:10.1137/21M1438566
[34] Krahmer, F.; Kruschel, C.; Sandbichler, M., Total variation minimization in compressed sensing, Compressed Sensing and its Applications, 333-58 (2017), Cham: Birkhäuser/Springer, Cham · doi:10.1007/978-3-319-69802-1_11
[35] Krahmer, F.; Ward, R., New and improved Johnson-Lindenstrauss embeddings via the restricted isometry property, SIAM J. Math. Anal., 43, 1269-81 (2011) · Zbl 1247.15019 · doi:10.1137/100810447
[36] Krahmer, F.; Ward, R., Stable and robust sampling strategies for compressive imaging, IEEE Trans. Image Process., 23, 612-22 (2014) · Zbl 1374.94181 · doi:10.1109/TIP.2013.2288004
[37] Li, P.; Chen, W.; Ge, H.; Ng, M. K-P, \(####\) minimization methods for signal and image reconstruction with impulsive noise removal, Inverse Problems, 36 (2020) · Zbl 1468.94021 · doi:10.1088/1361-6420/ab750c
[38] Lou, Y.; Yin, P.; He, Q.; Xin, J., Computing sparse representation in a highly coherent dictionary based on difference of l_1l_2, J. Sci. Comput., 64, 178-96 (2015) · Zbl 1327.65111 · doi:10.1007/s10915-014-9930-1
[39] Lou, Y.; Zeng, T.; Osher, S.; Xin, J., A weighted difference of anisotropic and isotropic total variation model for image processing, SIAM J. Imaging Sci., 8, 1798-823 (2015) · Zbl 1322.94019 · doi:10.1137/14098435X
[40] Lustig, M.; Donoho, D.; Pauly, J. M., Sparse MRI: the application of compressed sensing for rapid MR imaging, Magn. Reson. Med., 58, 1182-95 (2007) · doi:10.1002/mrm.21391
[41] Lustig, M.; Donoho, D. L.; Santos, J. M.; Pauly, J. M., Compressed sensing MRI, IEEE Signal Process. Mag., 25, 72-82 (2008) · doi:10.1109/MSP.2007.914728
[42] Ma, T-H; Lou, Y.; Huang, T-Z, Truncated \(####\) models for sparse recovery and rank minimization, SIAM J. Imaging Sci., 10, 1346-80 (2017) · Zbl 1397.94021 · doi:10.1137/16M1098929
[43] Mendelson, S.; Pajor, A.; Tomczak-Jaegermann, N., Reconstruction and subgaussian operators in asymptotic geometric analysis, Geom. Funct. Anal., 17, 1248-82 (2007) · Zbl 1163.46008 · doi:10.1007/s00039-007-0618-7
[44] Moll, J. S., The anisotropic total variation flow, Math. Ann., 332, 177-218 (2005) · Zbl 1109.35061 · doi:10.1007/s00208-004-0624-0
[45] Möllenhoff, T.; Strekalovskiy, E.; Moeller, M.; Cremers, D., The primal-dual hybrid gradient method for semiconvex splittings, SIAM J. Imaging Sci., 8, 827-57 (2015) · Zbl 1328.68278 · doi:10.1137/140976601
[46] Needell, D.; Ward, R., Near-optimal compressed sensing guarantees for total variation minimization, IEEE Trans. Image Process., 22, 3941-9 (2013) · Zbl 1373.94673 · doi:10.1109/TIP.2013.2264681
[47] Needell, D.; Ward, R., Stable image reconstruction using total variation minimization, SIAM J. Imaging Sci., 6, 1035-58 (2013) · Zbl 1370.94042 · doi:10.1137/120868281
[48] Nikolova, M., Energy minimization methods, Handbook of Mathematical Methods in Imaging, 157-204 (2015), New York: Springer, New York · Zbl 1331.65089 · doi:10.1007/978-0-387-92920-0_5
[49] Osher, S.; Rudin, L. I., Feature-oriented image enhancement using shock filters, SIAM J. Numer. Anal., 27, 919-40 (1990) · Zbl 0714.65096 · doi:10.1137/0727053
[50] Pierre, F.; Aujol, J-F; Bugeau, A.; Steidl, G.; Ta, V-T, Variational contrast enhancement of gray-scale and RGB images, J. Math. Imaging Vis., 57, 99-116 (2017) · Zbl 1425.68443 · doi:10.1007/s10851-016-0670-8
[51] Poon, C., On the role of total variation in compressed sensing, SIAM J. Imaging Sci., 8, 682-720 (2015) · Zbl 1381.94038 · doi:10.1137/140978569
[52] Rauhut, H.; Romberg, J.; Tropp, J. A., Restricted isometries for partial random circulant matrices, Appl. Comput. Harmon. Anal., 32, 242-54 (2012) · Zbl 1245.15040 · doi:10.1016/j.acha.2011.05.001
[53] Rauhut, H.; Ward, R., Sparse Legendre expansions via \(####\)-minimization, J. Approx. Theory, 164, 517-33 (2012) · Zbl 1239.65018 · doi:10.1016/j.jat.2012.01.008
[54] Rudelson, M.; Vershynin, R., On sparse reconstruction from Fourier and Gaussian measurements, Commun. Pure Appl. Math., 61, 1025-45 (2008) · Zbl 1149.94010 · doi:10.1002/cpa.20227
[55] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 259-68 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[56] Setzer, S.; Steidl, G., Variational methods with higher-order derivatives in image processing, Approximation Theory XII: San Antonio 2007 (Modern Methods in Mathematics), 360-85 (2008), Brentwood, TN: Nashboro Press, Brentwood, TN · Zbl 1175.68520
[57] Setzer, S.; Steidl, G.; Teuber, T., Infimal convolution regularizations with discrete \(####\)-type functionals, Commun. Math. Sci., 9, 797-827 (2011) · Zbl 1269.49063 · doi:10.4310/CMS.2011.v9.n3.a7
[58] Strong, D.; Chan, T. F., Edge-preserving and scale-dependent properties of total variation regularization, Inverse Problems, 19, S165 (2003) · Zbl 1043.94512 · doi:10.1088/0266-5611/19/6/059
[59] Tao, P. D.; An, L. T H., Convex analysis approach to DC programming: theory, algorithms and applications, Acta Math. Vietnam., 22, 289-355 (1997) · Zbl 0895.90152
[60] Tao, P. D.; An, L. T H., A DC optimization algorithm for solving the trust-region subproblem, SIAM J. Optim., 8, 476-505 (1998) · Zbl 0913.65054 · doi:10.1137/S1052623494274313
[61] Tikhonov, A. N.; Arsenin, V. Y., Solutions of ill-Posed Problems (1977), Washington, DC: Wiley, Washington, DC · Zbl 0354.65028
[62] Welk, M.; Gilboa, G.; Weickert, J., Theoretical foundations for discrete forward-and-backward diffusion filtering, 527-38 (2009), Springer · doi:10.1007/978-3-642-02256-2_44
[63] Welk, M.; Steidl, G.; Weickert, J., Locally analytic schemes: a link between diffusion filtering and wavelet shrinkage, Appl. Comput. Harmon. Anal., 24, 195-224 (2008) · Zbl 1161.68831 · doi:10.1016/j.acha.2007.05.004
[64] Welk, M.; Theis, D.; Brox, T.; Weickert, J., PDE-based deconvolution with forward-backward diffusivities and diffusion tensors, 585-97 (2005), Springer · Zbl 1119.68511 · doi:10.1007/11408031_50
[65] Welk, M.; Weickert, J.; Galić, I., Theoretical foundations for spatially discrete 1-D shock filtering, Image Vis. Comput., 25, 455-63 (2007) · doi:10.1016/j.imavis.2006.06.001
[66] Welk, M.; Weickert, J.; Gilboa, G., A discrete theory and efficient algorithms for forward-and-backward diffusion filtering, J. Math. Imaging Vis., 60, 1399-426 (2018) · Zbl 1433.94017 · doi:10.1007/s10851-018-0847-4
[67] Wen, J.; Weng, J.; Tong, C.; Ren, C.; Zhou, Z., Sparse signal recovery with minimization of 1-norm minus 2-norm, IEEE Trans. Veh. Technol., 68, 6847-54 (2019) · doi:10.1109/TVT.2019.2919612
[68] Yan, L.; Shin, Y.; Xiu, D., Sparse approximation using \(####\) minimization and its application to stochastic collocation, SIAM J. Sci. Comput., 39, A229-54 (2017) · Zbl 1381.94029 · doi:10.1137/15M103947X
[69] Yin, P.; Lou, Y.; He, Q.; Xin, J., Minimization of \(####\) for compressed sensing, SIAM J. Sci. Comput., 37, A536-63 (2015) · Zbl 1316.90037 · doi:10.1137/140952363
[70] You, J.; Jiao, Y.; Lu, X.; Zeng, T., A nonconvex model with minimax concave penalty for image restoration, J. Sci. Comput., 78, 1063-86 (2019) · Zbl 1419.94014 · doi:10.1007/s10915-018-0801-z
[71] Zhang, C-H, Nearly unbiased variable selection under minimax concave penalty, Ann. Stat., 38, 894-942 (2010) · Zbl 1183.62120 · doi:10.1214/09-AOS729
[72] Zhang, S.; Xin, J., Minimization of transformed L_1 penalty: closed form representation and iterative thresholding algorithms, Commun. Math. Sci., 15, 511-37 (2017) · Zbl 1386.94048 · doi:10.4310/CMS.2017.v15.n2.a9
[73] Zhang, S.; Xin, J., Minimization of transformed \(####\) penalty: theory, difference of convex function algorithm and robust application in compressed sensing, Math. Program., 169, 307-36 (2018) · Zbl 1386.94049 · doi:10.1007/s10107-018-1236-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.