×

Locally analytic schemes: a link between diffusion filtering and wavelet shrinkage. (English) Zbl 1161.68831

Summary: We study a class of numerical schemes for nonlinear diffusion filtering that offers insights on the design of novel wavelet shrinkage rules for isotropic and anisotropic image enhancement. These schemes utilise analytical or semi-analytical solutions to dynamical systems that result from space-discrete nonlinear diffusion filtering on minimalistic images with \(2\times 2\) pixels. We call them locally analytic schemes and locally semi-analytic schemes, respectively. They can be motivated from discrete energy functionals, offer sharp edges due to their locality, are very simple to implement because of their explicit nature, and enjoy unconditional absolute stability. They are applicable to singular nonlinear diffusion filters such as TV flow, to bounded nonlinear diffusion filters of Perona-Malik type, and to tensor-driven anisotropic methods such as edge-enhancing or coherence-enhancing diffusion filtering.
The fact that these schemes use processes within \(2\times 2\)-pixel blocks allows to connect them to shift-invariant Haar wavelet shrinkage on a single scale. This interpretation leads to novel shrinkage rules for two- and higher-dimensional images that are scalar-, vector- or tensor-valued. Unlike classical shrinkage strategies they employ a diffusion-inspired coupling of the wavelet channels that guarantees an approximation with an excellent degree of rotation invariance. By extending these schemes from a single scale to a multi-scale setting, we end up at hybrid methods that demonstrate the possibility to realise the effects of the most sophisticated diffusion filters within a fairly simplistic wavelet setting that requires only Haar wavelets in conjunction with coupled shrinkage rules.

MSC:

68U10 Computing methodologies for image processing
68T05 Learning and adaptive systems in artificial intelligence
65T60 Numerical methods for wavelets
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
60G35 Signal detection and filtering (aspects of stochastic processes)

References:

[1] Alvarez, L.; Guichard, F.; Lions, P.-L.; Morel, J.-M., Axioms and fundamental equations in image processing, Arch. Ration. Mech. Anal., 123, 199-257 (1993) · Zbl 0788.68153
[2] Andreu, F.; Caselles, V.; Diaz, J. I.; Mazón, J. M., Qualitative properties of the total variation flow, J. Funct. Anal., 188, 2, 516-547 (2002) · Zbl 1042.35018
[3] Andreu-Vaillo, F.; Caselles, V.; Mazon, J. M., Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progress in Math., vol. 223 (2004), Birkhäuser: Birkhäuser Basel · Zbl 1053.35002
[4] Bao, Y.; Krim, H., Towards bridging scale-space and multiscale frame analyses, (Petrosian, A. A.; Meyer, F. G., Wavelets in Signal and Image Analysis. Wavelets in Signal and Image Analysis, Computational Imaging and Vision, vol. 19 (2001), Kluwer: Kluwer Dordrecht), chapter 6 · Zbl 1057.68720
[5] Bellettini, G.; Caselles, V.; Novaga, M., The total variation flow in \(R^N\), J. Differential Equations, 184, 2, 475-525 (2002) · Zbl 1036.35099
[6] Blomgren, P.; Chan, T. F., Color TV: Total variation methods for restoration of vector valued images, IEEE Trans. Image Process., 7, 3, 304-309 (1998)
[7] Bredies, K.; Lorenz, D. A.; Maaß, P.; Teschke, G., A partial differential equation for continuous non-linear shrinkage filtering and its application for analyzing MMG data, (Truchetet, F., Wavelet Applications in Industrial Processing. Wavelet Applications in Industrial Processing, Proceedings of SPIE, vol. 5266 (2004), SPIE Press: SPIE Press Bellingham), 84-93
[8] Breuß, M.; Brox, T.; Bürgel, A.; Sonar, T.; Weickert, J., Numerical aspects of TV flow, Numer. Algorithms, 41, 1, 79-101 (2006) · Zbl 1116.65099
[9] Candès, E.; Demanet, L.; Donoho, D.; Ying, L., Fast discrete curvelet transform, Multiscale Model. Simul., 5, 3, 861-899 (2006) · Zbl 1122.65134
[10] Candès, E. J.; Donoho, D. L., Curvelets: A surprisingly effective nonadaptive representation of objects with edges, (Cohen, A.; Rabut, C.; Schumaker, L. L., Curve and Surface Fitting. Curve and Surface Fitting, Saint-Malo, 2000 (2000), Vanderbilt Univ. Press)
[11] Candès, E. J.; Guo, F., New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction, Signal Process., 82, 11, 1519-1543 (2002) · Zbl 1009.94510
[12] Catté, F.; Lions, P.-L.; Morel, J.-M.; Coll, T., Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal., 32, 1895-1909 (1992)
[13] Chambolle, A.; DeVore, R. A.; Lee, N.; Lucier, B. L., Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage, IEEE Trans. Image Process., 7, 3, 319-335 (1998) · Zbl 0993.94507
[14] Chambolle, A.; Lucier, B. L., Interpreting translationally-invariant wavelet shrinkage as a new image smoothing scale space, IEEE Trans. Image Process., 10, 7, 993-1000 (2001) · Zbl 1036.68607
[15] T.F. Chan, H.M. Zhou, Total variation improved wavelet thresholding in image compression, in: Proc. Seventh International Conference on Image Processing, vol. II, Vancouver, Canada, Sept. 2000, pp. 391-394; T.F. Chan, H.M. Zhou, Total variation improved wavelet thresholding in image compression, in: Proc. Seventh International Conference on Image Processing, vol. II, Vancouver, Canada, Sept. 2000, pp. 391-394
[16] Cohen, A.; Dahmen, W.; Daubechies, I.; DeVore, R., Harmonic analysis in the space BV, Rev. Mat. Iberoamericana, 19, 235-262 (2003) · Zbl 1044.42028
[17] Cohen, A.; DeVore, R.; Petrushev, P.; Xu, H., Nonlinear approximation and the space BV \((R^2)\), Amer. J. Math., 121, 587-628 (1999) · Zbl 0931.41019
[18] Coifman, R. R.; Donoho, D., Translation invariant denoising, (Antoine, A.; Oppenheim, G., Wavelets in Statistics (1995), Springer: Springer New York), 125-150 · Zbl 0866.94008
[19] Coifman, R. R.; Sowa, A., Combining the calculus of variations and wavelets for image enhancement, Appl. Comput. Harmon. Anal., 9, 1, 1-18 (2000) · Zbl 1094.65514
[20] Coifman, R. R.; Sowa, A., New methods of controlled total variation reduction for digital functions, SIAM J. Numer. Anal., 39, 2, 480-498 (2001) · Zbl 0998.42023
[21] Dibos, F.; Koepfler, G., Global total variation minimization, SIAM J. Numer. Anal., 37, 2, 646-664 (2000) · Zbl 0957.49002
[22] Do, M. N.; Vetterli, V., Contourlets, (Stöckler, J.; Welland, G., Beyond Wavelets (2003), Academic Press: Academic Press New York), 1-27 · Zbl 1086.65125
[23] Donoho, D. L., De-noising by soft thresholding, IEEE Trans. Inform. Theory, 41, 613-627 (1995) · Zbl 0820.62002
[24] Donoho, D. L., Orthonormal ridgelets and linear singularities, SIAM J. Math. Anal., 31, 5, 1062-1099 (2000) · Zbl 0952.42020
[25] Donoho, D. L.; Johnstone, I. M., Ideal spatial adaptation by wavelet shrinkage, Biometrica, 81, 3, 425-455 (1994) · Zbl 0815.62019
[26] DuFort, E. C.; Frankel, S. P., Stability conditions in the numerical treatment of parabolic differential equations, Math. Tables Other Aids Comput., 7, 135-152 (1953) · Zbl 0053.26401
[27] Durand, S.; Froment, J., Reconstruction of wavelet coefficients using total-variation minimization, SIAM J. Sci. Comput., 24, 5, 1754-1767 (2003) · Zbl 1031.42037
[28] S. Durand, M. Nikolova, Restoration of wavelet coefficients by minimizing a specially designed objective function, in: O. Faugeras, N. Paragios (Eds.), Proc. Second IEEE Workshop on Geometric and Level Set Methods in Computer Vision, Nice, France, INRIA, 2003; S. Durand, M. Nikolova, Restoration of wavelet coefficients by minimizing a specially designed objective function, in: O. Faugeras, N. Paragios (Eds.), Proc. Second IEEE Workshop on Geometric and Level Set Methods in Computer Vision, Nice, France, INRIA, 2003
[29] Feng, X.; Prohl, A., Analysis of total variation flow and its finite element approximations, ESAIM: Math. Models Methods Appl. Sci., 37, 3, 533-556 (2002) · Zbl 1050.35004
[30] Filippov, A. F., Differential Equations with Discontinuous Righthand Sides (1988), Kluwer: Kluwer Dordrecht · Zbl 0664.34001
[31] W. Förstner, E. Gülch, A fast operator for detection and precise location of distinct points, corners and centres of circular features, in: Proc. ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, June 1987, pp. 281-305; W. Förstner, E. Gülch, A fast operator for detection and precise location of distinct points, corners and centres of circular features, in: Proc. ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, June 1987, pp. 281-305
[32] Gerig, G.; Kübler, O.; Kikinis, R.; Jolesz, F. A., Nonlinear anisotropic filtering of MRI data, IEEE Trans. Med. Imag., 11, 221-232 (1992)
[33] Jawerth, B.; Lin, P.; Sinzinger, E., Lattice Boltzmann models for anisotropic diffusion of images, J. Math. Imag. Vision, 11, 231-237 (1999) · Zbl 0941.68793
[34] Keeling, S. L.; Stollberger, R., Nonlinear anisotropic diffusion filters for wide range edge sharpening, Inverse Problems, 18, 175-190 (2002) · Zbl 1006.94002
[35] Kingsbury, N. G., Complex wavelets for shift invariant analysis and filtering of signals, J. Appl. Comput. Harmon. Anal., 10, 3, 234-253 (2001) · Zbl 0990.94005
[36] Labate, D.; Lim, W.; Kutyniok, G.; Weiss, G., Sparse multidimensional representation using shearlets, (Papadakis, M.; Laine, A. F.; Unser, M. A., Wavelets XI. Wavelets XI, Proceedings of SPIE, vol. 5914 (2005), SPIE Press: SPIE Press Bellingham), 254-262
[37] Lu, T.; Neittaanmäki, P.; Tai, X.-C., A parallel splitting up method and its application to Navier-Stokes equations, Appl. Math. Lett., 4, 2, 25-29 (1991) · Zbl 0718.65066
[38] Malgouyres, F., Combining total variation and wavelet packet approaches for image deblurring, (Proc. First IEEE Workshop on Variational and Level Set Methods in Computer Vision. Proc. First IEEE Workshop on Variational and Level Set Methods in Computer Vision, Vancouver, Canada, July 2001 (2001), IEEE Computer Society Press), 57-64
[39] Malgouyres, F., Mathematical analysis of a model which combines total variation and wavelet for image restoration, Inverse Problems, 2, 1, 1-10 (2002)
[40] Meyer, Y., Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, Univ. Lecture Ser., vol. 22 (2001), AMS: AMS Providence · Zbl 0987.35003
[41] Mrázek, P.; Weickert, J., Rotationally invariant wavelet shrinkage, (Michaelis, B.; Krell, G., Pattern Recognition. Pattern Recognition, Lecture Notes in Comput. Sci., vol. 2781 (2003), Berlin: Berlin Springer), 156-163
[42] Mrázek, P.; Weickert, J.; Steidl, G., Diffusion-inspired shrinkage functions and stability results for wavelet denoising, Int. J. Comput. Vision, 64, 2/3, 171-186 (2005) · Zbl 1477.94019
[43] Mrázek, P.; Weickert, J.; Steidl, G.; Welk, M., On iterations and scales of nonlinear filters, (Drbohlav, O., Proc. Eighth Computer Vision Winter Workshop. Proc. Eighth Computer Vision Winter Workshop, Valtice, Czech Republic (2003), Czech Pattern Recognition Society), 61-66
[44] Perona, P.; Malik, J., Scale space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12, 629-639 (1990)
[45] Petrovic, A.; Divorra Escoda, O.; Vandergheynst, P., Multiresolution segmentation of natural images: From linear to non-linear scale-space representations, IEEE Trans. Image Process., 13, 8, 1104-1114 (2004)
[46] Pollak, I.; Willsky, A. S.; Krim, H., Image segmentation and edge enhancement with stabilized inverse diffusion equations, IEEE Trans. Image Process., 9, 2, 256-266 (2000) · Zbl 0979.65059
[47] Preußer, T.; Rumpf, M., An adaptive finite element method for large scale image processing, J. Vis. Commun. Image Represent., 11, 2, 183-195 (2000)
[48] Richardson, J. L.; Ferrell, R. C.; Long, L. N., Unconditionally stable explicit algorithms for nonlinear fluid dynamics problems, J. Comput. Phys., 104, 69-74 (1993) · Zbl 0766.76061
[49] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 259-268 (1992) · Zbl 0780.49028
[50] Sapiro, G.; Ringach, D. L., Anisotropic diffusion of multivalued images with applications to color filtering, IEEE Trans. Image Process., 5, 11, 1582-1586 (1996)
[51] Shen, J., A note on wavelets and diffusion, J. Comput. Anal. Appl., 5, 1, 147-159 (2003) · Zbl 1043.42035
[52] Shen, J.; Strang, G., On wavelet fundamental solutions to the heat equation—Heatlets, J. Differential Equations, 161, 2, 403-421 (2000) · Zbl 0953.35051
[53] E. P. Simoncelli, Design of multidimensional derivative filters, in: Proc. 1994 IEEE International Conference on Image Processing, vol. 1, Austin, TX, 1994, pp. 790-793; E. P. Simoncelli, Design of multidimensional derivative filters, in: Proc. 1994 IEEE International Conference on Image Processing, vol. 1, Austin, TX, 1994, pp. 790-793
[54] Sochen, N.; Kimmel, R.; Bruckstein, F., Diffusions and confusions in signal and image processing, J. Math. Imag. Vision, 14, 3, 195-210 (2001) · Zbl 0994.94011
[55] Steidl, G.; Weickert, J.; Brox, T.; Mrázek, P.; Welk, M., On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs, SIAM J. Numer. Anal., 42, 2, 686-713 (2004) · Zbl 1083.94001
[56] Tsurkov, V. I., An analytical model of edge protection under noise suppression by anisotropic diffusion, J. Comput. Systems Sci. Int., 39, 3, 437-440 (2000)
[57] Wang, W., On the design of optimal derivative filters for coherence-enhancing diffusion filtering, (Proc. 2004 International Conference on Computer Graphics, Imaging and Visualization. Proc. 2004 International Conference on Computer Graphics, Imaging and Visualization, Penang, Malaysia, July 2004 (2004), IEEE Computer Society Press), 35-40
[58] J. Weickert, Scale-space properties of nonlinear diffusion filtering with a diffusion tensor, technical report 110, Laboratory of Technomathematics, University of Kaiserslautern, Germany, 1994; J. Weickert, Scale-space properties of nonlinear diffusion filtering with a diffusion tensor, technical report 110, Laboratory of Technomathematics, University of Kaiserslautern, Germany, 1994
[59] Weickert, J., Anisotropic Diffusion in Image Processing (1998), Teubner: Teubner Stuttgart · Zbl 0886.68131
[60] Weickert, J.; Brox, T., Diffusion and regularization of vector- and matrix-valued images, (Nashed, M. Z.; Scherzer, O., Inverse Problems, Image Analysis, and Medical Imaging. Inverse Problems, Image Analysis, and Medical Imaging, Contemp. Math., vol. 313 (2002), AMS: AMS Providence), 251-268 · Zbl 1047.68143
[61] Weickert, J.; Scharr, H., A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance, J. Vis. Commun. Image Represent., 13, 1/2, 103-118 (2002)
[62] Weickert, J.; ter Haar Romeny, B. M.; Viergever, M. A., Efficient and reliable schemes for nonlinear diffusion filtering, IEEE Trans. Image Process., 7, 3, 398-410 (1998)
[63] Welk, M.; Weickert, J.; Steidl, G., A four-pixel scheme for singular differential equations, (Kimmel, R.; Sochen, N.; Weickert, J., Scale-Space and PDE Methods in Computer Vision. Scale-Space and PDE Methods in Computer Vision, Lecture Notes in Comput. Sci., vol. 3459 (2005), Berlin: Berlin Springer), 585-597 · Zbl 1070.68003
[64] Welk, M.; Weickert, J.; Steidl, G., From tensor-driven diffusion to anisotropic wavelet shrinkage, (Bischof, H.; Leonardis, A.; Pinz, A., Computer Vision—ECCV 2006. Computer Vision—ECCV 2006, Lecture Notes in Comput. Sci., vol. 3951 (2006), Berlin: Berlin Springer), 391-403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.