×

Two high-order compact difference schemes with temporal graded meshes for time-fractional Black-Scholes equation. (English) Zbl 1542.91424

Fractional differential equations which can be regarded as a generalization of classical differential equations that involve non-integer order derivatives, have emerged as a powerful tool in modeling and describing many complex phenomena that may not captured by classical differential equations. These significant applications in a wide range of scientific and engineering field include anomalous diffusion process, viscoelastic materials, chemistry, economics and finance.
In the present paper two high-order compact difference schemes with graded meshes are proposed for solving the time-fractional Black-Scholes (B-S) equation. Firstly, the convection term by using an exponential transformation is eliminated. Second, by combining the sixth-order / eighth-order compact difference method with a temporal graded meshes – based trapezoidal formulation for the temporal integral term to obtain the fully discrete high-order compact difference scheme. The stability and convergence analysis of the both proposed schemes are studied by applying Fourier analysis. The effectiveness of the proposed schemes and the correctness of the theoretical results are verified by two numerical examples.
In the Introduction the numerical schemes for solving one of the fractional models applied in finance, so-called time-fractional Black-Scholes equation is presented and discussed.
In Section 2 how to obtain the fully discrete high-order compact difference scheme with temporal graded meshes is shown. For the purpose of numerical simulation, the time-fractional B-S equation is considered to be solved on a finite domain. In order to perform the derivation of the numerical schemes, here some assumptions are proposed. The sixth-order compact difference scheme is expressed in a matrix form.
In Section 3 the stability of the high-order compact difference schemes by using Fourier analysis is presented. It is proved that the proposed sixth-order and eighth-order compact difference schemes are stabile.
In Section 4 the error estimates of the both proposed schemes are presented. In Theorem 4.3 the error estimate for the sixth-order compact difference scheme is given. The same is made in Theorem 4.5 but for the eighth-order compact difference scheme.
In Section 5 two numerical examples are provided to verify the accuracy of the both high-order compact difference schemes besides, the numerical simulation for the time-fractional B-S model which describes the European option price are performed to illustrated the practicability of the proposed schemes. The results are graphically illustrated.
In Section 6 there is a small conclusion.

MSC:

91G60 Numerical methods (including Monte Carlo methods)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
35G20 Nonlinear higher-order PDEs
65C30 Numerical solutions to stochastic differential and integral equations
35G25 Initial value problems for nonlinear higher-order PDEs
Full Text: DOI

References:

[1] N. Abdi, H. Aminikhah, A. R. Sheikhani, High-order compact finite difference schemes for the time-fractional Black-Scholes model governing European options, Chaos Solitons Fractals, 162 (2022), 112423. https://doi.org/10.1016/j.chaos.2022.112423 · Zbl 1506.91181 · doi:10.1016/j.chaos.2022.112423
[2] Z. Cen, J. Huang, A. Xu, A. Le, Numerical approximation of a time-fractional Black-Scholes equation, Comput. Math. Appl., 75 (2018), 2874-2887. https://doi.org/10.1016/j.camwa.2018.01.016 · Zbl 1415.65187 · doi:10.1016/j.camwa.2018.01.016
[3] C. M. Chen, F. Liu, I. Turner, V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227 (2007), 886-897. https://doi.org/10.1016/j.jcp.2007.05.012 · Zbl 1165.65053 · doi:10.1016/j.jcp.2007.05.012
[4] W. Chen, X. Xu, S. P. Zhu, Analytically pricing double barrier options based on a time-fractional Black-Scholes equation, Comput. Math. Appl., 69 (2015), 1407-1419. https://doi.org/10.1016/j.camwa.2015.03.025 · Zbl 1443.91285 · doi:10.1016/j.camwa.2015.03.025
[5] H. Ding, C. Li, High‐order compact difference schemes for the modified anomalous subdiffusion equation, Numer. Methods Partial Differ. Equ., 32 (2016), 213-242. https://doi.org/10.1002/num.21992 · Zbl 1339.65109 · doi:10.1002/num.21992
[6] R. L. Du, Z. Z. Sun, H. Wang, Temporal second-order finite difference schemes for variable-order time-fractional wave equations, SIAM J. Numer. Anal., 60 (2022), 104-132. https://doi.org/10.1137/19m1301230 · Zbl 1481.65128 · doi:10.1137/19m1301230
[7] J. Gu, L. Nong, Q. Yi, A. Chen, Compact difference schemes with temporal uniform/non-uniform meshes for time-fractional Black-Scholes equation, Fractal Fract., 7 (2023), 340. https://doi.org/10.3390/fractalfract7040340 · doi:10.3390/fractalfract7040340
[8] Y. Huang, Q. Li, R. Li, F. Zeng, L. Guo, A unified fast memory-saving time-stepping method for fractional operators and its applications, Numer. Math. Theor. Meth. Appl., 15 (2022), 679-714. https://doi.org/10.4208/nmtma.oa-2022-0023 · Zbl 1524.65349 · doi:10.4208/nmtma.oa-2022-0023
[9] B. Jin, R. Lazarov, Z. Zhou, Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview, Comput. Methods Appl. Mech. Engrg., 346 (2019), 332-358. https://doi.org/10.1016/j.cma.2018.12.011 · Zbl 1440.65138 · doi:10.1016/j.cma.2018.12.011
[10] K. Kazmi, A second order numerical method for the time-fractional Black-Scholes European option pricing model, J. Comput. Appl. Math., 418 (2023), 114647. https://doi.org/10.1016/j.cam.2022.114647 · Zbl 1502.91058 · doi:10.1016/j.cam.2022.114647
[11] C. Li, Q. Yi, A. Chen, Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316 (2016), 614-631. https://doi.org/10.1016/j.jcp.2016.04.039 · Zbl 1349.65246 · doi:10.1016/j.jcp.2016.04.039
[12] J. R. Liang, J. Wang, W. J. Zhang, W. Y. Qiu, F. Y. Ren, Option pricing of a bi-fractional Black-Merton-Scholes model with the Hurst exponent H in \([\frac{1}{2}, 1]\), Appl. Math. Lett., 23 (2010) 859-863. https://doi.org/10.1016/j.aml.2010.03.022 · Zbl 1189.91210 · doi:10.1016/j.aml.2010.03.022
[13] Y. Liu, J. Roberts, Y. Yan, Detailed error analysis for a fractional Adams method with graded meshes, Numer. Algorithms, 78 (2018), 1195-1216. https://doi.org/10.1007/s11075-017-0419-5 · Zbl 1398.65173 · doi:10.1007/s11075-017-0419-5
[14] P. Lyu, S. Vong, A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin-Bona-Mahony equation, J. Sci. Comput., 80 (2019), 1607-1628. https://doi.org/10.1007/s10915-019-00991-6 · Zbl 1428.35461 · doi:10.1007/s10915-019-00991-6
[15] H. Mesgarani, M. Bakhshandeh, Y. E. Aghdam, J. F. Gómez-Aguilar, The convergence analysis of the numerical calculation to price the time-fractional Black-Scholes model, Comput. Econ., 2022. https://doi.org/10.1007/s10614-022-10322-x · doi:10.1007/s10614-022-10322-x
[16] L. Nong, A. Chen, Numerical schemes for the time-fractional mobile/immobile transport equation based on convolution quadrature, J. Appl. Math. Comput., 68 (2022), 199-215. https://doi.org/10.1007/s12190-021-01522-z · Zbl 1487.65155 · doi:10.1007/s12190-021-01522-z
[17] L. Nong, A. Chen, J. Cao, Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data, Math. Model. Nat. Phenom., 16 (2021), 12. https://doi.org/10.1051/mmnp/2021007 · Zbl 1473.65211 · doi:10.1051/mmnp/2021007
[18] H. Qin, D. Li, Z. Zhang, A novel scheme to capture the initial dramatic evolutions of nonlinear subdiffusion equations, J. Sci. Comput., 89 (2021), 65. https://doi.org/10.1007/s10915-021-01672-z · Zbl 1481.65151 · doi:10.1007/s10915-021-01672-z
[19] P. Roul, A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European options, Appl. Numer. Math., 151 (2020), 472-493. https://doi.org/10.1016/j.apnum.2019.11.004 · Zbl 1437.91455 · doi:10.1016/j.apnum.2019.11.004
[20] P. Roul, Design and analysis of a high order computational technique for time‐fractional Black-Scholes model describing option pricing, Math. Methods Appl. Sci., 45 (2022), 5592-5611. https://doi.org/10.1002/mma.8130 · Zbl 1527.91180 · doi:10.1002/mma.8130
[21] F. Soleymani, S. Zhu, Error and stability estimates of a time-fractional option pricing model under fully spatial-temporal graded meshes, J. Comput. Appl. Math., 425 (2023) 115075. https://doi.org/10.1016/j.cam.2023.115075 · Zbl 07700264 · doi:10.1016/j.cam.2023.115075
[22] M. Stynes, E. O’Riordan, J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057-1079. https://doi.org/10.1137/16m1082329 · Zbl 1362.65089 · doi:10.1137/16m1082329
[23] Z. Tian, S. Zhai, H. Ji, Z. Weng, A compact quadratic spline collocation method for the time-fractional Black-Scholes model, J. Appl. Math. Comput., 66 (2021), 327-350. https://doi.org/10.1007/s12190-020-01439-z · Zbl 1541.91264 · doi:10.1007/s12190-020-01439-z
[24] S. Wang, A novel fitted finite volume method for the Black-Scholes equation governing option pricing, IMA J. Numer. Anal., 24 (2004), 699-720. https://doi.org/10.1093/imanum/24.4.699 · Zbl 1147.91332 · doi:10.1093/imanum/24.4.699
[25] X. Xu, M. Chen, Discovery of subdiffusion problem with noisy data via deep learning, J. Sci. Comput., 92 (2022), 23. https://doi.org/10.1007/s10915-022-01879-8 · Zbl 07549611 · doi:10.1007/s10915-022-01879-8
[26] B. Yin, Y. Liu, H. Li, F. Zeng, A class of efficient time-stepping methods for multi-term time-fractional reaction-diffusion-wave equations, Appl. Numer. Math., 165 (2021), 56-82. https://doi.org/10.1016/j.apnum.2021.02.007 · Zbl 1475.65136 · doi:10.1016/j.apnum.2021.02.007
[27] W. Yuan, D. Li, C. Zhang, Linearized transformed \(L1\) Galerkin FEMs with unconditional convergence for nonlinear time fractional Schrödinger equations, Numer. Math. Theory Methods Appl., 16 (2023), 348-369. https://doi.org/10.4208/nmtma.oa-2022-0087 · Zbl 07814759 · doi:10.4208/nmtma.oa-2022-0087
[28] W. Yuan, C. Zhang, and D. Li, Linearized fast time-stepping schemes for time-space fractional Schrödinger equations, Physica D, 454 (2023), 133865. https://doi.org/10.1016/j.physd.2023.133865 · Zbl 07736394 · doi:10.1016/j.physd.2023.133865
[29] H. Zhang, F. Liu, I. Turner, Q. Yang, Numerical solution of the time fractional Black-Scholes model governing European options, Comput. Math. Appl., 71 (2016), 1772-1783. https://doi.org/10.1016/j.camwa.2016.02.007 · Zbl 1443.91335 · doi:10.1016/j.camwa.2016.02.007
[30] J. Zhou, X. M. Gu, Y. L. Zhao, H. Li, A fast compact difference scheme with unequal time-steps for the tempered time-fractional Black-Scholes model, Int. J. Comput. Math., (2023), 1-23. https://doi.org/10.1080/00207160.2023.2254412 · doi:10.1080/00207160.2023.2254412
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.