×

A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin-Bona-Mahony equation. (English) Zbl 1428.35461

Summary: The solution of a time-fractional differential equation often exhibits a weak singularity near the initial time. It makes classical numerical methods with uniform mesh usually lose their accuracy. Technique of nonuniform mesh was found to be a very efficient approach in the literatures to recover the full accuracy based on reasonable regularity of the solution. In this paper, we study finite difference scheme with temporal nonuniform mesh for time-fractional Benjamin-Bona-Mahony equations with non-smooth solutions. Our approximation bases on an integral equation equivalent to the nonlinear problem under consideration. We employ high-order interpolation formulas to obtain a linearized scheme on a nonuniform mesh and, by using a modified Grönwall inequality established recently, we show that the proposed scheme with a temporal graded mesh is unconditionally third-order convergent in time with respect to discrete \(H^1\)-norm. Besides high order convergence the proposed scheme has the advantage that only linear systems are needed to be solved for obtaining approximated solutions. Numerical examples are provided to justify the accuracy.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
65D05 Numerical interpolation
45D05 Volterra integral equations
65R20 Numerical methods for integral equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35B65 Smoothness and regularity of solutions to PDEs
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424-438 (2015) · Zbl 1349.65261 · doi:10.1016/j.jcp.2014.09.031
[2] Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. A 272, 47-78 (1972) · Zbl 0229.35013 · doi:10.1098/rsta.1972.0032
[3] Chen, H., Stynes, M.: Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. (2019). https://doi.org/10.1007/s10915-018-0863-y · Zbl 1419.65010 · doi:10.1007/s10915-018-0863-y
[4] Dehghan, M., Abbaszadeh, M., Deng, W.: Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 73, 120-127 (2017) · Zbl 1375.65173 · doi:10.1016/j.aml.2017.04.011
[5] Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin-Bona-Mahony-Burgers and regularized long-wave equations on non-rectangular domains with error estimate. J. Comput. Appl. Math. 286, 211-231 (2015) · Zbl 1315.65086 · doi:10.1016/j.cam.2015.03.012
[6] Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The numerical solution of nonlinear high dimensional generalized Benjamin-Bona-Mahony-Burgers equation via the meshless method of radial basis functions. Comput. Math. Appl. 68, 212-237 (2014) · Zbl 1369.65126 · doi:10.1016/j.camwa.2014.05.019
[7] Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Part. Differ. Equ. 26, 448-479 (2010) · Zbl 1185.65187
[8] Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2000.7194
[9] Gracia, J.L., O’Riordan, E., Stynes, M.: A fitted scheme for a Caputo initial-boundary value problem. J. Sci. Comput. 76, 583-609 (2018) · Zbl 1397.65160 · doi:10.1007/s10915-017-0631-4
[10] Guner, O., Bekir, A.: Bright and dark soliton solutions for some nonlinear fractional differential equations. Chin. Phys. B 25, 030203 (2016) · doi:10.1088/1674-1056/25/3/030203
[11] Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, 561-582 (2015) · Zbl 1321.65142 · doi:10.1093/imanum/dru018
[12] Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197-221 (2016) · Zbl 1336.65150
[13] Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146-A170 (2016) · Zbl 1381.65082 · doi:10.1137/140979563
[14] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amersterdam (2006) · Zbl 1092.45003
[15] Li, C.: Linearized difference schemes for a BBM equation with a fractional nonlocal viscous term. Appl. Math. Comput. 311, 240-250 (2017) · Zbl 1427.65169
[16] Li, C.P., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614-631 (2016) · Zbl 1349.65246 · doi:10.1016/j.jcp.2016.04.039
[17] Liao, H.L., Li, D., Zhang, J.: Sharp error estimate of a nonuniform L1 formula for time-fractional reaction – subdiffusion equations. SIAM J. Numer. Anal. 56, 1112-1133 (2018) · Zbl 1447.65026 · doi:10.1137/17M1131829
[18] Liao, H.L., McLean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. arXiv:1803.09873v2 [math.NA] · Zbl 1473.65110
[19] Liao, H.L., Sun, Z.Z.: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Part. Differ. Equ. 26, 37-60 (2010) · Zbl 1196.65154 · doi:10.1002/num.20414
[20] Liu, Y., Roberts, J., Yan, Y.: A note on finite difference methods for nonlinear fractional differential equations with non-uniform meshes. Int. J. Comput. Math. 95, 1151-1169 (2018) · Zbl 1499.65338 · doi:10.1080/00207160.2017.1381691
[21] Lyu, P., Vong, S.: A linearized and second-order unconditionally convergent scheme for coupled time fractional Klein-Gordon-Schrödinger equation. Numer. Methods Part. Differ. Equ. 34, 2153-2179 (2018) · Zbl 1407.65118 · doi:10.1002/num.22282
[22] Lyu, P., Vong, S.: A linearized second-order finite difference scheme for time fractional generalized BBM equation. Appl. Math. Lett. 78, 16-23 (2018) · Zbl 1385.65051 · doi:10.1016/j.aml.2017.10.011
[23] Lyu, P., Vong, S.: A linearized second-order scheme for nonlinear time fractional Klein-Gordon type equations. Numer. Algorithms 78, 485-511 (2018) · Zbl 1420.65087 · doi:10.1007/s11075-017-0385-y
[24] Ma, J., Tang, T.: Error analysis for a fast numerical method to a boundary integral equation of the first kind. J. Comput. Math. 26, 56-68 (2008) · Zbl 1174.65053
[25] McLean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52, 123-138 (2010) · Zbl 1228.35266 · doi:10.1017/S1446181111000617
[26] McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481-510 (2007) · Zbl 1111.65113 · doi:10.1007/s00211-006-0045-y
[27] Medeiros, L.A., Menzala, G.P.: Existence and uniqueness for periodic solutions of the Benjamin-Bona-Mahony equation. SIAM J. Math. Anal. 8, 792-799 (1997) · Zbl 0337.35004 · doi:10.1137/0508062
[28] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[29] Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction diffusion equations. J. Comput. Appl. Math. 275, 216-227 (2015) · Zbl 1298.35242 · doi:10.1016/j.cam.2014.07.029
[30] Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491-515 (2013) · Zbl 1267.26005 · doi:10.1137/120880719
[31] Mustapha, K., Schötzau, D.: Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34, 1426-1446 (2014) · Zbl 1310.65128 · doi:10.1093/imanum/drt048
[32] Omrani, K., Ayadi, M.: Finite difference discretization of the Benjamin-Bona-Mahony-Burgers equation. Numer. Methods Part. Differ. Equ. 24, 239-248 (2007) · Zbl 1133.65067 · doi:10.1002/num.20256
[33] Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) · Zbl 0924.34008
[34] Rosiera, L., Zhang, B.Y.: Unique continuation property and control for the Benjamin-Bona-Mahony equation on a periodic domain. J. Differ. Equ. 254, 141-178 (2013) · Zbl 1256.35122 · doi:10.1016/j.jde.2012.08.014
[35] Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426-447 (2011) · Zbl 1219.35367 · doi:10.1016/j.jmaa.2011.04.058
[36] Song, L., Zhang, H.: Solving the fractional BBM-Burgers equation using the homotopy analysis method. Chaos Solitons Fractals 40, 1616-1622 (2009) · Zbl 1198.65205 · doi:10.1016/j.chaos.2007.09.042
[37] Stynes, M.: Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19, 1554-1562 (2016) · Zbl 1353.35306 · doi:10.1515/fca-2016-0080
[38] Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057-1079 (2017) · Zbl 1362.65089 · doi:10.1137/16M1082329
[39] Sun, Z.Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012)
[40] Tang, T.: A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. 13, 93-99 (1993) · Zbl 0765.65126 · doi:10.1093/imanum/13.1.93
[41] Tang, T.: Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations. Numer. Math. 61, 373-382 (1992) · Zbl 0741.65110 · doi:10.1007/BF01385515
[42] Vong, S., Lyu, P.: Unconditional convergence in maximum-norm of a second-order linearized scheme for a time-fractional Burgers-type equation. J. Sci. Comput. 76, 1252-1273 (2018) · Zbl 1397.65148 · doi:10.1007/s10915-018-0659-0
[43] Zhang, J., Xu, C.: Finite difference/spectral approximations to a water wave model with a nonlocal viscous term. Appl. Math. Model. 38, 4912-4925 (2014) · Zbl 1428.76149 · doi:10.1016/j.apm.2014.03.051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.