×

Primary resonance of traveling viscoelastic beam under internal resonance. (English) Zbl 1358.74017

Summary: Under the 3:1 internal resonance condition, the steady-state periodic response of the forced vibration of a traveling viscoelastic beam is studied. The viscoelastic behaviors of the traveling beam are described by the standard linear solid model, and the material time derivative is adopted in the viscoelastic constitutive relation. The direct multi-scale method is used to derive the relationships between the excitation frequency and the response amplitudes. For the first time, the real modal functions are employed to analytically investigate the periodic response of the axially traveling beam. The undetermined coefficient method is used to approximately establish the real modal functions. The approximate analytical results are confirmed by the Galerkin truncation. Numerical examples are presented to highlight the effects of the viscoelastic behaviors on the steady-state periodic responses. To illustrate the effect of the internal resonance, the energy transfer between the internal resonance modes and the saturation-like phenomena in the steady-state responses is presented.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74S05 Finite element methods applied to problems in solid mechanics
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics

References:

[1] Zhu, W. D., Guo, B. Z., and Mote, C. D. Stabilization of a translating tensioned beam through a pointwise control force. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME,122, 322-331 (2000) · doi:10.1115/1.482458
[2] Yang, T. Z. and Yang, X. D. Exact solution of supercritical axially moving beams: symmetric and anti-symmetric configurations. Archive of Applied Mechanics,83, 899-906 (2013) · Zbl 1293.74275 · doi:10.1007/s00419-012-0725-2
[3] Sandilo, S. H. and van Horssen, W. T. On boundary damping for an axially moving tensioned beam. Journal of Vibration and Acoustics-Transactions of the ASME,134, 011005 (2012) · doi:10.1115/1.4005025
[4] Marynowski, K. and Kapitaniak, T. Dynamics of axially moving continua. International Journal of Mechanical Sciences,81, 26-41 (2014) · doi:10.1016/j.ijmecsci.2014.01.017
[5] Yao, M. H. and Zhang, W. Multi-pulse homoclinic orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt. International Journal of Nonlinear Sciences and Numerical Simulation,6, 37-45 (2005) · Zbl 1401.70012 · doi:10.1515/IJNSNS.2005.6.1.37
[6] Ozhan, B. B. and Pakdemirli, M. A general solution procedure for the forced vibrations of a continuous system with cubic nonlinearities: primary resonance case. Journal of Sound and Vibration,325, 894-906 (2009) · doi:10.1016/j.jsv.2009.04.009
[7] Ozhan, B. B. and Pakdemirli, M. Effect of viscoelasticity on the natural frequencies of axially moving continua. Advances in Mechanical Engineering,5, 169598 (2013) · doi:10.1155/2013/169598
[8] Yang, X. D. and Zhang, W. Nonlinear dynamics of axially moving beam with coupled longitudinal-transversal vibrations. Nonlinear Dynamics,78, 2547-2556 (2014) · Zbl 1305.91069 · doi:10.1007/s11071-014-1609-5
[9] Ding, H. and Zu, J. W. Steady-state responses of pulley-belt systems with a one-way clutch and belt bending stiffness. Journal of Vibration and Acoustics-Transactions of the ASME,136, 041006 (2014) · doi:10.1115/1.4027456
[10] Yan, Q. Y., Ding, H. and Chen, L. Q. Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations. Applied Mathematics and Mechanics (English Edition), 36, 971-984 (2015) DOI 10.1007/s10483-015-1966-7 · Zbl 1322.74038 · doi:10.1007/s10483-015-1966-7
[11] Tang, Y. Q., Zhang, D. B., and Gao, J. M. Parametric and internal resonance of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. Nonlinear Dynamics,83, 401-418 (2016) · Zbl 1349.74187 · doi:10.1007/s11071-015-2336-2
[12] Wang, L. H., Hu, Z. D., Zhong, Z., and Ju, J. W. Dynamic analysis of an axially translating viscoelastic beam with an arbitrarily varying length. Acta Mechanica,214, 225-244 (2010) · Zbl 1375.74058 · doi:10.1007/s00707-010-0287-8
[13] Chen, L. Q. and Chen, H. Asymptotic analysis on nonlinear vibration of axially accelerating viscoelastic strings with the standard linear solid model. Journal of Engineering Mathematics,67, 205-218 (2010) · Zbl 1193.74052 · doi:10.1007/s10665-009-9316-9
[14] Wang, B. Asymptotic analysis on weakly forced vibration of axially moving viscoelastic beam constituted by standard linear solid model. Applied Mathematics and Mechanics (English Edition), 33, 817-828 (2012) DOI 10.1007/s10483-012-1588-8 · doi:10.1007/s10483-012-1588-8
[15] Saksa, T. and Jeronen, J. Dynamic analysis for axially moving viscoelastic Poynting-Thomson beams. Mathematical Modeling and Optimization of Complex Structures,40, 131-151 (2016) · doi:10.1007/978-3-319-23564-6_9
[16] Ghayesh, M. H. and Amabili, M. Nonlinear stability and bifurcations of an axially moving beam in thermal environment. Journal of Vibration and Control,21, 2981-2994 (2015) · doi:10.1177/1077546313508576
[17] Sze, K. Y., Chen, S. H., and Huang, J. L. The incremental harmonic balance method for nonlinear vibration of axially moving beams. Journal of Sound and Vibration,281, 611-626 (2005) · doi:10.1016/j.jsv.2004.01.012
[18] Huang, J. L., Su, R. K. L., Li, W. H., and Chen, S. H. Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances. Journal of Sound and Vibration,330, 471-485 (2011) · doi:10.1016/j.jsv.2010.04.037
[19] Wang, L. H., Ma, J. J., Yang, M. H., Li, L. F., and Zhao, Y. Y. Multimode dynamics of inextensional beams on the elastic foundation with two-to-one internal resonances. Journal of Applied Mechanics-Transactions of the ASME,80, 061016 (2013) · doi:10.1115/1.4023694
[20] Sahoo, B., Panda, L. N., and Pohit, G. Combination, principal parametric and internal resonances of an accelerating beam under two frequency parametric excitation. International Journal of Non-Linear Mechanics,78, 35-44 (2016) · doi:10.1016/j.ijnonlinmec.2015.09.017
[21] Ding, H., Zhang, G. C., Chen, L. Q., and Yang, S. P. Forced vibrations of supercritically transporting viscoelastic beams. Journal of Vibration and Acoustics-Transactions of the ASME,134, 051007 (2012) · doi:10.1115/1.4006184
[22] Liu, D. Xu, W. and Xu, Y. Dynamic responses of axially moving viscoelastic beam under a randomly disordered periodic excitation. Journal of Sound and Vibration,331, 4045-4056 (2012) · doi:10.1016/j.jsv.2012.04.005
[23] Ding, H. and Zu, J. W. Periodic and chaotic responses of an axially accelerating viscoelastic beam under two-frequency excitations. International Journal of Applied Mechanics,5, 1350019 (2013) · doi:10.1142/S1758825113500191
[24] Kang, H. J., Zhao, Y. Y., and Zhu, H. P. Out-of-plane free vibration analysis of a cable-arch structure. Journal of Sound and Vibration,332, 907-921 (2013) · doi:10.1016/j.jsv.2012.10.007
[25] Ding, H. Steady-state responses of a belt-drive dynamical system under dual excitations ACTA Mechanics Sinica, 32, 156-169 (2016) · Zbl 1342.70055 · doi:10.1007/s10409-015-0510-x
[26] Zhang, J. R., Guo, Z. X., Zhang, Y., Tang, L., and Guan, X. Inner structural vibration isolation method for a single control moment gyroscope. Journal of Sound and Vibration,361, 78-98 (2016) · doi:10.1016/j.jsv.2015.09.027
[27] Li, X. H. and Hou, J. Y. Bursting phenomenon in a piecewise mechanical system with parameter perturbation in stiffness. International Journal of Non-Linear Mechanics,81, 165-176 (2016) · doi:10.1016/j.ijnonlinmec.2016.01.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.