×

Review and perspectives in applied mechanics of axially moving flexible structures. (English) Zbl 1518.74053

Summary: This comprehensive review primarily concerns axially moving flexible structures in problems involving distributed structure-to-solid contact. The distinguishing features of axially moving structures are presented in terms of prevalent studies regarding models with simplified support conditions. Subsequent sections focus on the particular difficulties of treating contact problems with classical structural theories, on the appropriate non-material kinematic description for travelling structures, on the proper formulation of established mechanical principles for open systems and on the category of Arbitrary Lagrangian-Eulerian (ALE) approaches, which are frequently applied for the development of application-oriented finite element schemes. Novel analytical and numerical transient solutions for the benchmark problem of an axially moving beam, which is travelling across a rough surface between two misaligned joints, are presented to illustrate particular challenges as well as to highlight perspectives for future research activities. There are 177 references cited in this paper.

MSC:

74K99 Thin bodies, structures
74H99 Dynamical problems in solid mechanics
74M15 Contact in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74S05 Finite element methods applied to problems in solid mechanics
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids

References:

[1] Vetyukov, Y., Endless elastic beam travelling on a moving rough surface with zones of stick and sliding, Nonlinear Dyn., 104, 4, 3309-3321 (2021) · doi:10.1007/s11071-021-06523-y
[2] Scheidl, J., Vetyukov, Y., Schmidrathner, C., Schulmeister, K., Proschek, M.: Mixed Eulerian-Lagrangian shell model for lateral run-off in a steel belt drive and its experimental validation. Int. J. Mech. Sci. 204, 106572 (2021). ISSN 0020-7403. doi:10.1016/j.ijmecsci.2021.106572. https://www.sciencedirect.com/science/article/pii/S0020740321003076
[3] Schmidrathner, C., Vetyukov, Y., Scheidl, J.: Non-material finite element rod model for the lateral run-off in a two-pulley belt drive. ZAMM—J. Appl. Math. Mech./Z. Angew. Math. Mech. 102(1), e202100135 (2022). doi:10.1002/zamm.202100135. doi:10.1002/zamm.202100135 · Zbl 1536.74275
[4] Kocbay, E.; Vetyukov, Y., Stress resultant plasticity for plate bending in the context of roll forming of sheet metal, Int. J. Numer. Methods Eng., 122, 18, 5144-5168 (2021) · Zbl 07863887 · doi:10.1002/nme.6760
[5] Rubin, M.B.: An exact solution for steady motion of an extensible belt in multipulley belt drive systems. J. Mech. Des. 122(3), 311-316 (2000). ISSN 1050-0472. doi:10.1115/1.1288404
[6] Kong, L., Parker, R.G.: Steady mechanics of belt-pulley systems. J. Appl. Mech. 72(1), 25-34 (2005). ISSN 0021-8936. doi:10.1115/1.1827251 · Zbl 1111.74488
[7] Raeymaekers, B., Talke, F.E.: Lateral motion of an axially moving tape on a cylindrical guide surface. J. Appl. Mech. 74(5), 1053-1056 (2007). ISSN 0021-8936. doi:10.1115/1.2723823
[8] Skutsch, R., Über die Bewegung eines gespannten Fadens, welcher gezwungen ist, durch zwei feste Punkte mit einer constanten Geschwindigkeit zu gehen, und zwischen denselben in Transversalschwingungen von geringer Amplitude versetzt wird, Ann. Phys., 297, 5, 190-195 (1897) · JFM 28.0724.03 · doi:10.1002/andp.18972970510
[9] Sack, RA, Transverse oscillations in travelling strings, Br. J. Appl. Phys., 5, 6, 224-226 (1954) · doi:10.1088/0508-3443/5/6/307
[10] Archibald, F.R., Emslie, A.G.: The vibration of a string having a uniform motion along its length. J. Appl. Mech. 25(3), 347-348 (1958). ISSN 0021-8936. doi:10.1115/1.4011824 · Zbl 0084.41101
[11] Renshaw, A.A., Jr. Mote, C.D.: Local stability of Gyroscopic systems near vanishing eigenvalues. J. Appl. Mech. 63(1), 116-120 (1996). ISSN 0021-8936. doi:10.1115/1.2787185 · Zbl 0898.70011
[12] Banichuk, N., Barsuk, A., Jeronen, J., Tuovinen, T., Neittaanmäki, P.: Stability of axially moving materials. Springer, Cham (2020). ISBN 978-3-030-23803-2. doi:10.1007/978-3-030-23803-2 · Zbl 1430.74003
[13] Troger, H., Steindl, A.: Nonlinear stability and bifurcation theory: an introduction for engineers and applied scientists. Springer, Vienna (1991). ISBN 978-3-7091-9168-2. doi:10.1007/978-3-7091-9168-2 · Zbl 0743.93076
[14] Chen, L.-Q.: Analysis and control of transverse vibrations of axially moving trings. Appl. Mech. Rev. 58(2), 91-116 (2005). ISSN 0003-6900. doi:10.1115/1.1849169
[15] Marynowski, K., Kapitaniak, T.: Dynamics of axially moving continua. Int. J. Mech. Sci. 81, 26-41 (2014). ISSN 0020-7403. doi:10.1016/j.ijmecsci.2014.01.017. https://www.sciencedirect.com/science/article/pii/S0020740314000381
[16] Wickert, J.A., Jr. Mote, C.D.: Classical vibration analysis of axially moving continua. J. Appl. Mech. 57(3), 738-744 (1990). ISSN 0021-8936. doi:10.1115/1.2897085 · Zbl 0724.73125
[17] Wang, Y., Huang, L., Liu, X.: Eigenvalue and stability analysis for transverse vibrations of axially moving strings based on Hamiltonian dynamics. Acta Mech. Sin. 21(5), 485-494 (2005). ISSN 1614-3116. doi:10.1007/s10409-005-0066-2 · Zbl 1200.74083
[18] Kong, L., Parker, R.G.: Approximate eigensolutions of axially moving beams with small flexural stiffness. J. Sound Vib. 276(1), 459-469 (2004). ISSN 0022-460X. doi:10.1016/j.jsv.2003.11.027. https://www.sciencedirect.com/science/article/pii/S0022460X03013233
[19] Mead, D.J.: Waves and modes in finite beams: application of the phase-closure principle. J. Sound Vib. 171(5), 695-702 (1994). ISSN 0022-460X. doi:10.1006/jsvi.1994.1150. https://www.sciencedirect.com/science/article/pii/S0022460X84711503 · Zbl 1064.74576
[20] Pellicano, F., Zirilli, F.: Boundary layers and non-linear vibrations in an axially moving beam. Int. J. Non-Linear Mech. 33(4), 691-711 (1998). ISSN 0020-7462. doi:10.1016/S0020-7462(97)00044-9. https://www.sciencedirect.com/science/article/pii/S0020746297000449 · Zbl 0905.73035
[21] Schneider, W.: Einfluß einer kleinen Biegesteifigkeit auf die Querschwingungen einer eingespannten rechteckigen Membran. Acta Mech. 13(3), 293-302 (1972). ISSN 1619-6937. doi:10.1007/BF01586800 · Zbl 0232.73076
[22] Özkaya, E., Pakdemirli, M.: Vibrations of an axially accelerating beam with small flexural stiffness. J. Sound Vib. 234(3), 521-535 (2000). ISSN 0022-460X. doi:10.1006/jsvi.2000.2890. https://www.sciencedirect.com/science/article/pii/S0022460X00928906
[23] Seitzberger, M., Rammerstorfer, F.G., Reichhold, C.: Lokale effekte in linientragwerken mit geringer biegefestigkeit. ZAMM—Z. Angew. Math. Mech. 77(1), 311-312 (1997). ISSN 0044-2267. https://www.tib.eu/de/suchen/id/BLSE · Zbl 0900.73407
[24] Jr. Mote, C.D.: On the nonlinear oscillation of an axially moving tring. J. Appl. Mech. 33(2), 463-464 (1966). ISSN 0021-8936. doi:10.1115/1.3625075
[25] Wickert, J.A.: Non-linear vibration of a traveling tensioned beam. Int. J. Non-Linear Mech. 27(3), 503-517 (1992). ISSN 0020-7462. doi:10.1016/0020-7462(92)90016-Z. https://www.sciencedirect.com/science/article/pii/002074629290016Z · Zbl 0779.73025
[26] Pellicano, F., Vestroni, F.: Nonlinear dynamics and bifurcations of an axially moving beam. J. Vib. Acoust. 122(1), 21-30 (1999). ISSN 1048-9002. doi:10.1115/1.568433
[27] Ghayesh, M.H., Amabili, M.: Post-buckling bifurcations and stability of high-speed axially moving beams. Int. J. Mech. Sci. 68, 76-91 (2013). ISSN 0020-7403. doi:10.1016/j.ijmecsci.2013.01.001. https://www.sciencedirect.com/science/article/pii/S0020740313000064
[28] Yang, X.-D., Liu, M., Qian, Y.-J., Yang, S., Zhang, W.: Linear and nonlinear modal analysis of the axially moving continua based on the invariant manifold method. Acta Mech. 228(2), 465-474 (2017). ISSN 1619-6937. doi:10.1007/s00707-016-1720-4 · Zbl 1454.74107
[29] Ding, H., Tan, X., Zhang, G.-C., Chen, L.-Q.: Equilibrium bifurcation of high-speed axially moving timoshenko beams. Acta Mech. 227(10), 3001-3014 (2016). ISSN 1619-6937. doi:10.1007/s00707-016-1677-3 · Zbl 1380.74067
[30] Yan, Q., Ding, H., Chen, L.: Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations. Appl. Math. Mech 36(8), 971-984 (2015). ISSN 1573-2754. doi:10.1007/s10483-015-1966-7 · Zbl 1322.74038
[31] Kim, M., Chung, J.: Dynamic analysis of a pulley-belt system with spring supports. Acta Mech. 228(9), 3307-3328 (2017). ISSN 1619-6937. doi:10.1007/s00707-017-1882-8 · Zbl 1430.70007
[32] Pan, Y., Liu, X., Shan, Y., Chen, G..: Complex modal analysis of serpentine belt drives based on beam coupling model. Mech. Mach. Theory 116, 162-177 (2017). ISSN 0094-114X. doi:10.1016/j.mechmachtheory.2017.05.016. https://www.sciencedirect.com/science/article/pii/S0094114X16303317
[33] Marynowski, K.: Non-linear dynamic analysis of an axialy moving viscoelastic beam. J. Theor. Appl. Mech. 40(2), 465-482 (2002). http://ptmts.org.pl/jtam/index.php/jtam/article/view/v40n2p465 · Zbl 1038.74025
[34] Mockensturm, E.M., Guo, J.: Nonlinear vibration of parametrically excited, viscoelastic, axially moving strings. J. Appl. Mech. 72(3), 374-380 (2005). ISSN 0021-8936. doi:10.1115/1.1827248 · Zbl 1111.74564
[35] Mote, C.D.: A study of band saw vibrations. J. Frankl. Inst. 279(6), 430-444 (1965). ISSN 0016-0032. doi:10.1016/0016-0032(65)90273-5. https://www.sciencedirect.com/science/article/pii/0016003265902735
[36] Ulsoy, A.G., Jr. Mote, C.D.: Vibration of wide band saw blades. J. Eng. Ind. 104(1), 71-78 (1982). ISSN 0022-0817. doi:10.1115/1.3185801
[37] Lin, C.C., Jr. Mote, C.D.: Equilibrium displacement and stress distribution in a two-dimensional, axially moving web under transverse loading. J. Appl. Mech. 62(3), 772-779 (1995). ISSN 0021-8936. doi:10.1115/1.2897013 · Zbl 0851.73031
[38] Lin, C.C., Mote, C.D.: Eigenvalue solutions predicting the wrinkling of rectangular webs under non-linearly distributed edge loading. J. Sound Vib. 197(2), 179-189 (1996). ISSN 0022-460X. doi:10.1006/jsvi.1996.0524. https://www.sciencedirect.com/science/article/pii/S0022460X96905246
[39] Lin, C.C.: Stability and vibration characteristics of axially moving plates. Int. J. Solids Struct. 34(24), 3179-3190 (1997). ISSN 0020-7683. doi:10.1016/S0020-7683(96)00181-3. https://www.sciencedirect.com/science/article/pii/S0020768396001813 · Zbl 0942.74567
[40] Banichuk, N., Jeronen, J., Neittaanmäki, P., Tuovinen, T.: On the instability of an axially moving elastic plate. Int. J. Solids Struct. 47(1), 91-99 (2010a). ISSN 0020-7683. doi:10.1016/j.ijsolstr.2009.09.020. https://www.sciencedirect.com/science/article/pii/S002076830900362X · Zbl 1193.74061
[41] Shin, C., Chung, J., Kim, W.: Dynamic characteristics of the out-of-plane vibration for an axially moving membrane. J. Sound Vibr. 286(4), 1019-1031 (2005). ISSN 0022-460X. doi:10.1016/j.jsv.2005.01.013. https://www.sciencedirect.com/science/article/pii/S0022460X05000738 · Zbl 1243.74060
[42] Luo, Z., Hutton, S.G.: Formulation of a three-node traveling triangular plate element subjected to gyroscopic and in-plane forces. Comput. Struct. 80(26), 1935-1944 (2002). ISSN 0045-7949. doi:10.1016/S0045-7949(02)00291-2. https://www.sciencedirect.com/science/article/pii/S0045794902002912
[43] Tang, Y.-Q., Chen, L.-Q.: Nonlinear free transverse vibrations of in-plane moving plates: Without and with internal resonances. J. Sound Vib. 330(1), 110-126 (2011). ISSN 0022-460X. doi:10.1016/j.jsv.2010.07.005. https://www.sciencedirect.com/science/article/pii/S0022460X10004591
[44] Marynowski, K.: Two-dimensional rheological element in modelling of axially moving viscoelastic web. Eur. J. Mech.—A/Solids 25(5), 729-744 (2006). ISSN 0997-7538. doi:10.1016/j.euromechsol.2005.10.005. URL https://www.sciencedirect.com/science/article/pii/S0997753805001427 · Zbl 1099.74017
[45] Marynowski, K.: Free vibration analysis of an axially moving multiscale composite plate including thermal effect. Int. J. Mech. Sci. 120, 62-69 (2017). ISSN 0020-7403. doi:10.1016/j.ijmecsci.2016.11.013. https://www.sciencedirect.com/science/article/pii/S0020740316307858
[46] Young, G.E., Reid, K.N.: Lateral and longitudinal dynamic behavior and control of moving webs. J. Dyn. Syst., Meas., Control 115(2B), 309-317 (1993). ISSN 0022-0434. doi:10.1115/1.2899071
[47] Elmaraghy, R., Tabarrok, B.: On the dynamic stability of an axially oscillating beam. J. Frankl. Inst. 300(1), 25-39 (1975). ISSN 0016-0032. doi:10.1016/0016-0032(75)90185-4. https://www.sciencedirect.com/science/article/pii/0016003275901854
[48] Arrasate, X., Kaczmarczyk, S., Almandoz, G., Abete, J.M., Isasa, I.: The modelling, simulation and experimental testing of the dynamic responses of an elevator system. Mech. Syst. Signal Process. 42(1), 258-282 (2014). ISSN 0888-3270. doi:10.1016/j.ymssp.2013.05.021. https://www.sciencedirect.com/science/article/pii/S088832701300280X
[49] Hirmann, G., Belyaev, A.K.: Stabilitätsverhalten eines schnellaufenden Synchronriemens. Antriebstechnik 36(6), 64-66, (1997). ISSN 0722-8546. https://www.tib.eu/en/search/id/tema:TEMAM97071224667/Stabilit
[50] Mockensturm, E.M., Perkins, N.C., Ulsoy, A.G.: Stability and limit cycles of parametrically excited, axially moving strings. J. Vib. Acoust. 118(3), 346-351 (1996). ISSN 1048-9002. doi:10.1115/1.2888189
[51] Pellicano, F., Fregolent, A., Bertuzzi, A., Vestroni, F.: Primary and parametric non-linear resonances of a power transmission belt: experimental and theoretical analysis. J. Sound Vib. 244(4), 669-684 (2001). ISSN 0022-460X. doi:10.1006/jsvi.2000.3488. https://www.sciencedirect.com/science/article/pii/S0022460X00934886
[52] Pellicano, F., Catellani, G., Fregolent, A.: Parametric instability of belts: theory and experiments. Comput. Struct. 82(1), 81-91 (2004). ISSN 0045-7949. doi:10.1016/j.compstruc.2003.07.004. https://www.sciencedirect.com/science/article/pii/S0045794903003638
[53] Parker, R.G., Lin, Y.: Parametric instability of axially moving media subjected to multifrequency tension and speed fluctuations. J. Appl. Mech. 68(1), 49-57 (2000). ISSN 0021-8936. doi:10.1115/1.1343914 · Zbl 1110.74620
[54] Zhang, D.-B., Tang, Y.-Q., Liang, R.-Q., Yang, L., Chen, L.-Q.: Dynamic stability of an axially transporting beam with two-frequency parametric excitation and internal resonance. Eur. J. Mech.—A/Solids 85, 104084 (2021). ISSN 0997-7538. doi:10.1016/j.euromechsol.2020.104084. https://www.sciencedirect.com/science/article/pii/S0997753820304721 · Zbl 1477.74053
[55] Spelsberg-Korspeter, G., Kirillov, Oleg N., Hagedorn, Peter.: Modeling and Stability Analysis of an Axially Moving Beam With Frictional Contact. Journal of Applied Mechanics, 75 (3): 031001, (2008). ISSN 0021-8936. doi:10.1115/1.2755166
[56] Niemi, J.; Pramila, A., FEM-analysis of transverse vibrations of an axially moving membrane immersed in ideal fluid, Int. J. Numer. Meth. Eng., 24, 12, 2301-2313 (1987) · Zbl 0625.76026 · doi:10.1002/nme.1620241205
[57] Banichuk, N., Jeronen, J., Neittaanmäki, P., Tuovinen, T.: Static instability analysis for travelling membranes and plates interacting with axially moving ideal fluid. J. Fluids Struct. 26(2), 274-291 (2010). ISSN 0889-9746. doi:10.1016/j.jfluidstructs.2009.09.006. https://www.sciencedirect.com/science/article/pii/S0889974609001200
[58] Yao, G., Zhang, Y.-M., Li, C.-Y., Yang, Z.: Stability analysis and vibration characteristics of an axially moving plate in aero-thermal environment. Acta Mech. 227(12), 3517-3527 (2016). ISSN 1619-6937. doi:10.1007/s00707-016-1674-6 · Zbl 1380.74054
[59] Païdoussis, M.P.: Slender structures and axial flow. In: volume 1 of Fluid-Structure Interactions, 2nd edn. Academic Press (2014). ISBN 978-0-12-397312-2. doi:10.1016/C2011-0-08057-2. https://www.sciencedirect.com/book/9780123973122/fluid-structure-interactions
[60] Païdoussis, M.P.: Slender structures and axial flow. In: Volume 2 of Fluid-Structure Interactions, 2nd edn. Academic Press (2016). ISBN 978-0-12-397333-7. doi:10.1016/C2011-0-08058-4. https://www.sciencedirect.com/book/9780123973337/fluid-structure-interactions
[61] Paidoussis, M.P.: Flow-induced instabilities of cylindrical structures. Appl. Mech. Rev. 40(2), 163-175 (1987). ISSN 0003-6900. doi:10.1115/1.3149530
[62] Pieber, M., Ntarladima, K., Winkler, R., Gerstmayr, J.: A hybrid arbitrary Lagrangian Eulerian formulation for the investigation of the stability of pipes conveying fluid and axially moving beams. J. Comput. Nonlinear Dyn. 17(5), 051006 (2022). ISSN 1555-1415. doi:10.1115/1.4053505
[63] Folley, C.N., Bajaj, A.K.: Spatial nonlinear dynamics near principal parametric resonance for a fluid-conveying cantilever pipe. J. Fluids Struct. 21(5), 459-484 (2005). ISSN 0889-9746. doi:10.1016/j.jfluidstructs.2005.08.014. https://www.sciencedirect.com/science/article/pii/S0889974605001775. Special Issue in Honour of Professor Michael P. Païdoussis
[64] Stangl, M., Gerstmayr, J., Irschik, H.: An alternative approach for the analysis of nonlinear vibrations of pipes conveying fluid. J. Sound Vib. 310(3), 493-511 (2008). ISSN 0022-460X. doi:10.1016/j.jsv.2007.06.020. https://www.sciencedirect.com/science/article/pii/S0022460X07004506. EUROMECH Colloquium 484 on Wave Mechanics and Stability of Long Flexible Structures Subject to Moving Loads and Flows
[65] Irschik, H., Holl, H.J.: The equations of Lagrange written for a non-material volume. Acta Mech. 153(3), 231-248 (2002). ISSN 1619-6937. doi:10.1007/BF01177454 · Zbl 1029.70006
[66] Renezeder, H.C.: On the dynamics of an axially moving cable with application to ropeways. Ph.D Thesis, TU Wien (2006). https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-14767
[67] Vetyukov, Y.: Non-material finite element modelling of large vibrations of axially moving strings and beams. J. Sound Vib. 414, 299-317 (2018). ISSN 0022-460X. doi:10.1016/j.jsv.2017.11.010. https://www.sciencedirect.com/science/article/pii/S0022460X17307824
[68] Perkins, N.C., Mote, C.D.: Three-dimensional vibration of travelling elastic cables. J. Sound Vib. 114(2), 325-340 (1987). ISSN 0022-460X. doi:10.1016/S0022-460X(87)80157-8. https://www.sciencedirect.com/science/article/pii/S0022460X87801578
[69] Perkins, N.C., Mote, C.D.: Theoretical and experimental stability of two translating cable equilibria. J. Sound Vib. 128(3), 397-410 (1989). ISSN 0022-460X. doi:10.1016/0022-460X(89)90782-7. https://www.sciencedirect.com/science/article/pii/0022460X89907827
[70] Wolfe, P.: Vibration of translating cables. Acta Mech. 158(1), 1-14 (2002). ISSN 1619-6937. doi:10.1007/BF01463165. doi:10.1007/BF01463165 · Zbl 1156.74335
[71] O’Reilly, O.M.: Steady motions of a drawn cable. J. Appl. Mech. 63(1), 180-189 (1996). ISSN 0021-8936. doi:10.1115/1.2787196 · Zbl 0873.73039
[72] Luo, A.C.J., Mote, C.D.: An exact, closed-form solution for equilibrium of traveling, sagged, elastic cables under uniformly distributed loading. Commun. Nonlinear Sci. Numer. Simul. 5(1), 6-11 (2000). ISSN 1007-5704. doi:10.1016/S1007-5704(00)90015-7. https://www.sciencedirect.com/science/article/pii/S1007570400900157 · Zbl 0968.74041
[73] Miroshnik, R.: The phenomenon of steady-state string motion. J. Appl. Mech. 68(4), 568-574 (2000). ISSN 0021-8936. doi:10.1115/1.1380677 · Zbl 1110.74585
[74] Wang, Y., Luo, A.C.J.: Dynamics of traveling, inextensible cables. Commun. Nonlinear Sci. Numer. Simul. 9(5), 531-542 (2004). ISSN 1007-5704. doi:10.1016/S1007-5704(03)00002-9. https://www.sciencedirect.com/science/article/pii/S1007570403000029 · Zbl 1121.74306
[75] Carrier, G.F.: The spaghetti problem. Am. Math. Mon. 56(10P1), 669-672 (1949). doi:10.1080/00029890.1949.11990208 · Zbl 0035.39305
[76] Zajaczkowski, J., Lipiński, J.: Instability of the motion of a beam of periodically varying length. J. Sound Vib. 63(1), 9-18 (1979). ISSN 0022-460X. doi:10.1016/0022-460X(79)90373-0. https://www.sciencedirect.com/science/article/pii/0022460X79903730 · Zbl 0395.73065
[77] Mansfield, L., Simmonds, J.G.: The reverse spaghetti problem: drooping motion of an elastica issuing from a horizontal guide. J. Appl. Mech. 54(1), 147-150 (1987). ISSN 0021-8936. doi:10.1115/1.3172949 · Zbl 0604.73059
[78] Wang, L., Hu, Z., Zhong, Z.: Dynamic analysis of an axially translating plate with time-variant length. Acta Mech. 215(1), 9-23 (2010). ISSN 1619-6937. doi:10.1007/s00707-010-0290-0 · Zbl 1398.74158
[79] Vu-Quoc, L., Li, S.: Dynamics of sliding geometrically-exact beams: large angle maneuver and parametric resonance. Comput. Methods Appl. Mech. Eng. 120(1), 65-118 (1995). ISSN 0045-7825. doi:10.1016/0045-7825(94)00051-N. https://www.sciencedirect.com/science/article/pii/004578259400051N · Zbl 0852.73030
[80] Humer, A.: Elliptic integral solution of the extensible elastica with a variable length under a concentrated force. Acta Mech. 222(3), 209-223 (2011). ISSN 1619-6937. doi:10.1007/s00707-011-0520-0 · Zbl 1398.74191
[81] Humer, A.: Dynamic modeling of beams with non-material, deformation-dependent boundary conditions. J. Sound Vib. 332(3), 622-641 (2013). ISSN 0022-460X. doi:10.1016/j.jsv.2012.08.026. https://www.sciencedirect.com/science/article/pii/S0022460X12007079
[82] Steinbrecher, I., Humer, A., Vu-Quoc, L.: On the numerical modeling of sliding beams: a comparison of different approaches. J. Sound Vib. 408, 270-290 (2017). ISSN 0022-460X. doi:10.1016/j.jsv.2017.07.010. https://www.sciencedirect.com/science/article/pii/S0022460X17305357
[83] Humer, A., Steinbrecher, I., Vu-Quoc, L.: General sliding-beam formulation: a non-material description for analysis of sliding structures and axially moving beams. J. Sound Vib. 480, 115341 (2020). ISSN 0022-460X. doi:10.1016/j.jsv.2020.115341. https://www.sciencedirect.com/science/article/pii/S0022460X20301723
[84] Boyer, F., Lebastard, V., Candelier, F., Renda, F.: Extended Hamilton’s principle applied to geometrically exact Kirchhoff sliding rods. J. Sound Vib. 516, 116511 (2022). ISSN 0022-460X. doi:10.1016/j.jsv.2021.116511. https://www.sciencedirect.com/science/article/pii/S0022460X21005411
[85] Boyer, F.; Lebastard, V.; Candelier, F.; Renda, F., Dynamics of continuum and soft robots: a strain parameterization based approach, IEEE Trans. Rob., 37, 3, 847-863 (2021) · doi:10.1109/TRO.2020.3036618
[86] Zhu, W.D., Ni, J.: Energetics and stability of translating media with an arbitrarily varying length. J. Vib. Acoust. 122(3), 295-304 (1999). ISSN 1048-9002. doi:10.1115/1.1303003
[87] Wang, C.Y.: Vibration of a vertical axially moving string or chain under the influence of gravity. Acta Mech. 228(1), 357-362 (2017). ISSN 1619-6937. doi:10.1007/s00707-016-1703-5 · Zbl 1369.74054
[88] Escalona, J.L., Mohammadi, N.: Advances in the modeling and dynamic simulation of reeving systems using the arbitrary Lagrangian-Eulerian modal method. Nonlinear Dyn. 108(4), 3985-4003 (2022). ISSN 1573-269X. doi:10.1007/s11071-022-07357-y
[89] Sandilo, S.H., van Horssen, W.T.: On variable length induced vibrations of a vertical string. J. Sound Vib. 333(11), 2432-2449 (2014). ISSN 0022-460X. doi:10.1016/j.jsv.2014.01.011. https://www.sciencedirect.com/science/article/pii/S0022460X14000339
[90] Kaczmarczyk, S., Iwankiewicz, R.: Gaussian and non-Gaussian stochastic response of slender continua with time-varying length deployed in tall structures. Int. J. Mech. Sci. 134, 500-510 (2017). ISSN 0020-7403. doi:10.1016/j.ijmecsci.2017.10.030. https://www.sciencedirect.com/science/article/pii/S0020740317303314
[91] Crespo, R.S., Kaczmarczyk, S., Picton, P., Su, H.: Modelling and simulation of a stationary high-rise elevator system to predict the dynamic interactions between its components. Int. J. Mech. Sci. 137, 24-45 (2018). ISSN 0020-7403. doi:10.1016/j.ijmecsci.2018.01.011. https://www.sciencedirect.com/science/article/pii/S002074031730543X
[92] Kubas, K., Harlecki, A.: Dynamic analysis of a belt transmission with the GMS friction model. Meccanica 56(9). 2293-2305 (2021). ISSN 1572-9648. doi:10.1007/s11012-021-01358-8 · Zbl 1521.74093
[93] Berger, E.J.: Friction modeling for dynamic system simulation. Appl. Mech. Rev. 55(6), 535-577 (2002). ISSN 0003-6900. doi:10.1115/1.1501080
[94] Yastrebov, V.A.: Numerical methods in contact mechanics. Wiley (2013). ISBN 9781118647974. doi:10.1002/9781118647974. doi:10.1002/9781118647974 · Zbl 1268.74003
[95] Hetzler, H.: On moving continua with contacts and sliding friction: modeling, general properties and examples. Int. J. Solids Struct. 46(13), 2556-2570 (2009). ISSN 0020-7683. doi:10.1016/j.ijsolstr.2009.01.037. https://www.sciencedirect.com/science/article/pii/S002076830900064X · Zbl 1167.74514
[96] Reynolds, Osborne.: On the efficiency of belts or straps as communicators of work. J. Frankl. Inst. 99(2), 142-145 (1875). ISSN 0016-0032. doi:10.1016/0016-0032(75)90662-6. https://www.sciencedirect.com/science/article/pii/0016003275906626
[97] Firbank, T.C.: Mechanics of the belt drive. Int. J. Mech. Sci. 12(12), 1053-1063 (1970). ISSN 0020-7403. doi:10.1016/0020-7403(70)90032-9. https://www.sciencedirect.com/science/article/pii/0020740370900329
[98] Gerbert, G.: Belt slip—a unified approach. J. Mech. Des. 118(3), 432-438 (1996). ISSN 1050-0472. doi:10.1115/1.2826904
[99] Frendo, F., Bucchi, F.: “Brush model” for the analysis of flat belt transmissions in steady-state conditions. Mech. Mach. Theory 143, 103653 (2020). ISSN 0094-114X. doi:10.1016/j.mechmachtheory.2019.103653. https://www.sciencedirect.com/science/article/pii/S0094114X19317732
[100] Bucchi, F., Frendo, F.: Validation of the brush model for the analysis of flat belt transmissions in steady-state conditions by finite element simulation. Mech. Mach. Theory 167, 104556 (2022). ISSN 0094-114X. doi:10.1016/j.mechmachtheory.2021.104556. https://www.sciencedirect.com/science/article/pii/S0094114X21003037
[101] Alciatore, D.G., Traver, A.E.: Multipulley belt drive mechanics: creep theory vs shear theory. J. Mech. Des. 117(4), 506-511 (1995). ISSN 1050-0472. doi:10.1115/1.2826711
[102] Scheidl, J., Vetyukov, Y.: Steady motion of a belt in frictional contact with a rotating pulley. In: Irschik, H., Krommer, M., Matveenko, V.P., Belyaev, A.K. (eds.) Dynamics and Control of Advanced Structures and Machines: Contributions from the 4th International Workshop, Linz, Austria, pp. 209-217. Springer, Cham (2022). ISBN 978-3-030-79325-8. doi:10.1007/978-3-030-79325-8_18
[103] Bechtel, S.E., Vohra, S., Jacob, K.I., Carlson, C.D.: The stretching and slipping of belts and fibers on pulleys. J. Appl. Mech. 67(1), 197-206 (1999). ISSN 0021-8936. doi:10.1115/1.321164 · Zbl 1110.74336
[104] Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer, New York (2005). ISBN 978-0-387-27649-6. doi:10.1007/0-387-27649-1 · Zbl 1098.74001
[105] Eliseev, V.V.: Mechanics of Deformable Solid Bodies. St. Petersburg State Polytechnical University Publishing House, St. Petersburg (2006). (in Russian)
[106] Morimoto, T., Iizuka, H.: Rolling contact between a rubber ring and rigid cylinders: mechanics of rubber belts. Int. J. Mech. Sci. 54(1), 234-240 (2012). ISSN 0020-7403. doi:10.1016/j.ijmecsci.2011.11.001. https://www.sciencedirect.com/science/article/pii/S0020740311002360
[107] Eliseev, V., Vetyukov, Y.: Effects of deformation in the dynamics of belt drive. Acta Mech. 223(8), 1657-1667 (2012). ISSN 1619-6937. doi:10.1007/s00707-012-0675-3 · Zbl 1401.74161
[108] Vetyukov, Yu; Oborin, E.; Krommer, M.; Eliseev, V., Transient modelling of flexible belt drive dynamics using the equations of a deformable string with discontinuities, Math. Comput. Model. Dyn. Syst., 23, 1, 40-54 (2017) · Zbl 1507.74188 · doi:10.1080/13873954.2016.1232281
[109] Oborin, E., Vetyukov, Y., Steinbrecher, I.: Eulerian description of non-stationary motion of an idealized belt-pulley system with dry friction. Int. J. Solids Struct. 147, 40-51 (2018). ISSN 0020-7683. doi:10.1016/j.ijsolstr.2018.04.007. https://www.sciencedirect.com/science/article/pii/S0020768318301513
[110] Scheidl, J.: Motion of a friction belt drive at mixed kinematic description. Int. J. Solids Struct. 200-201, 158-169 (2020). ISSN 0020-7683. doi:10.1016/j.ijsolstr.2020.05.001. https://www.sciencedirect.com/science/article/pii/S0020768320301682
[111] Belyaev, A.K., Eliseev, V.V., Irschik, H., Oborin, E.A.: Dynamics of contour motion of belt drive by means of nonlinear rod approach. In: Matveenko, V.P., Krommer, M., Belyaev, A.K., Irschik, H. (eds.) Dynamics and Control of Advanced Structures and Machines: Contributions from the 3rd International Workshop, Perm, Russia, pp. 21-29 (2019). Springer, Cham. ISBN 978-3-319-90884-7. doi:10.1007/978-3-319-90884-7_3
[112] Scheidl, J., Vetyukov, Y.: Steady motion of a slack belt drive: dynamics of a beam in frictional contact with rotating pulleys. J. Appl. Mech. (2020). ISSN 0021-8936. doi:10.1115/1.4048317
[113] Denoël, V., Advantages of a semi-analytical approach for the analysis of an evolving structure with contacts, Commun. Numer. Methods Eng., 24, 12, 1667-1683 (2008) · Zbl 1154.74012 · doi:10.1002/cnm.1059
[114] Gasmi, A., Joseph, P.F., Rhyne, T.B., Cron, S.M.: The effect of transverse normal strain in contact of an orthotropic beam pressed against a circular surface. Int. J. Solids Struct. 49(18), 2604-2616 (2012). ISSN 0020-7683. doi:10.1016/j.ijsolstr.2012.05.022. https://www.sciencedirect.com/science/article/pii/S0020768312002326
[115] Lorenz, M.: Ams, alfons: zur interaktion von Sägedraht und ingot. PAMM 12(1), 247-248 (2012). doi:10.1002/pamm.201210114
[116] Lorenz, M.: Berechnungsmodelle zur beschreibung der interaktion von bewegtem Sägedraht und ingot. Ph.D Thesis, Technische Universität Bergakademie Freiberg (2013). https://nbn-resolving.org/urn:nbn:de:bsz:105-qucosa-130678
[117] Hetzler, H., Willner, K.: On the influence of contact tribology on brake squeal. Tribol. Int. 46(1), 237-246 (2012). ISSN 0301-679X. doi:10.1016/j.triboint.2011.05.019.https://www.sciencedirect.com/science/article/pii/S0301679X11001514. 37th Leeds-Lyon Symposium on Tribology Special issue: Tribology for Sustainability: Economic, Environmental, and Quality of Life
[118] Essenburg, F.: On the significance of the inclusion of the effect of transverse normal strain in problems involving beams with surface constraints. J. Appl. Mech. 42(1), 127-132 (1975). ISSN 0021-8936. doi:10.1115/1.3423502 · Zbl 0327.73047
[119] Naghdi, P.M., Rubin, M.B.: On the significance of normal cross-sectional extension in beam theory with application to contact problems. Int. J. Solids Struct. 25(3), 249-265 (1989). ISSN 0020-7683. doi:10.1016/0020-7683(89)90047-4. https://www.sciencedirect.com/science/article/pii/0020768389900474
[120] Batista, M.: Elastic belt extended by two equal rigid pulleys. Acta Mech. 230(11), 3825-3838 (2019). ISSN 1619-6937. doi:10.1007/s00707-019-02377-z · Zbl 1431.74091
[121] Belyaev, A.K., Eliseev, V.V., Irschik, H., Oborin, E.A.: Contact of two equal rigid pulleys with a belt modelled as Cosserat nonlinear elastic rod. Acta Mech. 228(12), 4425-4434 (2017). ISSN 1619-6937. doi:10.1007/s00707-017-1942-0 · Zbl 1380.74065
[122] Vetyukov, Y., Oborin, E., Scheidl, J., Krommer, M., Schmidrathner, C.: Flexible belt hanging on two pulleys: contact problem at non-material kinematic description. Int. J. Solids Struct. 168, 183-193 (2019). ISSN 0020-7683. doi:10.1016/j.ijsolstr.2019.03.034. https://www.sciencedirect.com/science/article/pii/S0020768319301581
[123] Oborin, E., Vetyukov, Y.: Steady state motion of a shear deformable beam in contact with a traveling surface. Acta Mech. 230(11), 4021-4033 (2019). ISSN 0001-5970. doi:10.1007/s00707-019-02476-x
[124] Oborin, E.: Belt-pulley interaction: role of the action line of friction forces. Acta Mech. 231(9), 3979-3987 (2020). ISSN 1619-6937. doi:10.1007/s00707-020-02724-5
[125] Nordenholz, T.R., O’Reilly, O.M.: On steady motions of an elastic rod with application to contact problems. Int. J. Solids Struct. 34(9), 1123-1143 (1997). ISSN 0020-7683. doi:10.1016/S0020-7683(96)00054-6. URL https://www.sciencedirect.com/science/article/pii/S0020768396000546 · Zbl 0944.74575
[126] Naghdi, P.M., Rubin, M.B.: Constrained theories of rods. J. Elast. 14(4), 343-361 (1984). ISSN 1573-2681. doi:10.1007/BF00125605 · Zbl 0558.73042
[127] Mote, C.D.: Divergence buckling of an edge-loaded axially moving band. Int. J. Mech. Sci. 10(4), 281-295 (1968). ISSN 0020-7403. doi:10.1016/0020-7403(68)90013-1. https://www.sciencedirect.com/science/article/pii/0020740368900131
[128] Manta, D., Gon��alves, R.: A geometrically exact Kirchhoff beam model including torsion warping. Comput. Struct. 177, 192-203 (2016). ISSN 0045-7949. doi:10.1016/j.compstruc.2016.08.013. https://www.sciencedirect.com/science/article/pii/S0045794916303984
[129] Shelton, J.J., Reid, K.N.: Lateral dynamics of a real moving web. J. Dyn. Syst., Meas., Control 93(3), 180-186 (1971). ISSN 0022-0434. doi:10.1115/1.3426494
[130] Benson, R.C.: Lateral dynamics of a moving web with geometrical imperfection. J. Dynamic Syst., Meas., Control 124(1), 25-34 (2001). ISSN 0022-0434. doi:10.1115/1.1435643
[131] Raeymaekers, B., Talke, F.E.: Measurement and sources of lateral tape motion: a review. J. Tribol. 131(1), 12 (2008). ISSN 0742-4787. doi:10.1115/1.3002332. 011903
[132] Schulmeister, K.G.: Modellierung und regelung des lateralen laufverhaltens von Stahlprozessbändern. Ph.D thesis, TU Wien (2009)
[133] Taylor, R.J., Talke, F.E.: Investigation of roller interactions with flexible tape medium. Tribol. Int. 38(6), 599-605 (2005). ISSN 0301-679X. doi:10.1016/j.triboint.2005.01.008. https://www.sciencedirect.com/science/article/pii/S0301679X05000198. Tribology of Information Storage Devices, TISD 2003
[134] Nikitin, L.V., Fischer, F.D., Oberaigner, E.R., Rammerstorfer, F.G., Seitzberger, M., Mogilevsky, R.I.: On the frictional behaviour of thermally loaded beams resting on a plane. Int. J. Mech. Sci. 38(11), 1219-1229 (1996). ISSN 0020-7403. doi:10.1016/0020-7403(96)00009-4. https://www.sciencedirect.com/science/article/pii/0020740396000094 · Zbl 0862.73055
[135] Stupkiewicz, S., Mróz, Z.: Elastic beam on a rigid frictional foundation under monotonic and cyclic loading. Int. J. Solids Struct. 31(24), 3419-3442 (1994). ISSN 0020-7683. doi:10.1016/0020-7683(94)90024-8. https://www.sciencedirect.com/science/article/pii/0020768394900248 · Zbl 0946.74538
[136] Nordenholz, T.R., O’Reilly, O.M.: On kinematical conditions for steady motions of strings and rods. J. Appl. Mech. 62(3), 820-822 (1995). ISSN 0021-8936. doi:10.1115/1.2897023 · Zbl 0836.73031
[137] Laukkanen, J.: FEM analysis of a travelling web. Comput. Struct. 80(24), 1827-1842 (2002). ISSN 0045-7949. doi:10.1016/S0045-7949(02)00214-6. https://www.sciencedirect.com/science/article/pii/S0045794902002146
[138] Huynen, A., Detournay, E., Denoël, V.: Eulerian formulation of elastic rods. Proc. R. Soc. A: Math., Phys. Eng. Sci. 472(2190), 20150547 (2016). doi:10.1098/rspa.2015.0547 · Zbl 1371.74166
[139] Koivurova, H., Salonen, E.-M.: Comments on non-linear formulations for travelling string and beam problems. J. Sound Vib. 225(5), 845-856 (1999). ISSN 0022-460X. doi:10.1006/jsvi.1999.2274. https://www.sciencedirect.com/science/article/pii/S0022460X99922745 · Zbl 1235.74152
[140] Renshaw, A.A., Rahn, C.D., Wickert, J.A., Jr. Mote, C.D.: Energy and conserved functionals for axially moving materials. J. Vib. Acoust. 120(2), 634-636 (1998). ISSN 1048-9002. doi:10.1115/1.2893875
[141] Chen, K.-D., Liu, J.-P., Chen, J.-Q., Zhong, X.-Y., Mikkola, A., Lu, Q.-H., Ren, G.-X.: Equivalence of Lagrange’s equations for non-material volume and the principle of virtual work in ALE formulation. Acta Mech. 231(3), 1141-1157 (2020). ISSN 1619-6937. doi:10.1007/s00707-019-02576-8 · Zbl 1468.74041
[142] McIver, D.B.: Hamilton’s principle for systems of changing mass. J. Eng. Math. 7(3), 249-261 (1973). ISSN 1573-2703. doi:10.1007/BF01535286 · Zbl 0265.70010
[143] Casetta, L., Pesce, C.P.: The generalized Hamilton’s principle for a non-material volume. Acta Mech. 224(4), 919-924 (2013). ISSN 1619-6937. doi:10.1007/s00707-012-0807-9 · Zbl 1352.70048
[144] Irschik, H., Holl, H.J.: Lagrange’s equations for open systems, derived via the method of fictitious particles, and written in the Lagrange description of continuum mechanics. Acta Mech. 226(1), 63-79 (2015). ISSN 1619-6937. doi:10.1007/s00707-014-1147-8 · Zbl 1326.70049
[145] Casetta, L.: The inverse problem of Lagrangian mechanics for a non-material volume. Acta Mech. 226(1), 1-15 (2015). ISSN 1619-6937. doi:10.1007/s00707-014-1156-7 · Zbl 1328.70010
[146] Steinboeck, A., Saxinger, M., Kugi, A.: Hamilton’s principle for material and nonmaterial control volumes using Lagrangian and Eulerian description of motion. Appl. Mech. Rev. 71(1), 010802 (2019). ISSN 0003-6900. doi:10.1115/1.4042434
[147] Pechstein, A., Gerstmayr, J.: A Lagrange-Eulerian formulation of an axially moving beam based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 30(3), 343-358 (2013). ISSN 1573-272X. doi:10.1007/s11044-013-9350-2 · Zbl 1274.74156
[148] Dufva, K., Kerkkänen, K., Maqueda, L.G., Shabana, A.A.: Nonlinear dynamics of three-dimensional belt drives using the finite-element method. Nonlinear Dyn. 48(4), 449-466 (2007). ISSN 1573-269X. doi:10.1007/s11071-006-9098-9 · Zbl 1177.74363
[149] Benson, D.J.: An efficient, accurate, simple ALE method for nonlinear finite element programs. Comput. Methods Appl. Mech. Eng. 72(3), 305-350 (1989). ISSN 0045-7825. doi:10.1016/0045-7825(89)90003-0. https://www.sciencedirect.com/science/article/pii/0045782589900030 · Zbl 0675.73037
[150] Davey, K., Ward, M.J.: A practical method for finite element ring rolling simulation using the ALE flow formulation. Int. J. Mech. Sci. 44(1), 165-190 (2002). ISSN 0020-7403. doi:10.1016/S0020-7403(01)00080-7. https://www.sciencedirect.com/science/article/pii/S0020740301000807 · Zbl 1125.74383
[151] Donea, J., Huerta, A., Ponthot, J.-P., Rodríguez-Ferran, A.: Arbitrary Lagrangian-Eulerian methods. In: Encyclopedia of Computational Mechanics, Chapter 14. Wiley (2004). ISBN 9780470091357. doi:10.1002/0470091355.ecm009. doi:10.1002/0470091355.ecm009
[152] Crutzen, Y., Boman, R., Papeleux, L., Ponthot, J.-P.: Lagrangian and arbitrary Lagrangian Eulerian simulations of complex roll-forming processes. Compt. Rendus Mécan. 344(4), 251-266 (2016). ISSN 1631-0721. doi:10.1016/j.crme.2016.02.005. https://www.sciencedirect.com/science/article/pii/S1631072116000255. Computational simulation of manufacturing processes
[153] Askes, H., Kuhl, E., Steinmann, P.: An ALE formulation based on spatial and material settings of continuum mechanics. Part 2: classification and applications. Comput. Methods Appl. Mech. Eng. 193(39), 4223-4245 (2004). ISSN 0045-7825. doi:10.1016/j.cma.2003.09.031. https://www.sciencedirect.com/science/article/pii/S0045782504002208 · Zbl 1149.74392
[154] Kuhl, E., Askes, H., Steinmann, P.: An ALE formulation based on spatial and material settings of continuum mechanics. Part 1: Generic hyperelastic formulation. Comput. Methods Appl. Mech. Eng. 193(39), 4207-4222 (2004). ISSN 0045-7825. doi:10.1016/j.cma.2003.09.030. https://www.sciencedirect.com/science/article/pii/S0045782504002191. The Arbitrary Lagrangian-Eulerian Formulation · Zbl 1068.74078
[155] Nackenhorst, U.: The ALE-formulation of bodies in rolling contact: theoretical foundations and finite element approach. Comput. Methods Appl. Mech. Eng. 193(39), 4299-4322 (2004). ISSN 0045-7825. doi:10.1016/j.cma.2004.01.033. https://www.sciencedirect.com/science/article/pii/S0045782504002233. The Arbitrary Lagrangian-Eulerian Formulation · Zbl 1068.74079
[156] Garcia, M.A., Kaliske, M.: Isogeometric analysis for tire simulation at steady-state rolling. Tire Sci. Technol. 47(3), 174-195 (2019). ISSN 0090-8657. doi:10.2346/tire.19.170164
[157] Liu, J.-P., Cheng, Z.-B., Ren, G.-X.: An arbitrary Lagrangian-Eulerian formulation of a geometrically exact Timoshenko beam running through a tube. Acta Mech. 229(8), 3161-3188 (2018). ISSN 1619-6937. doi:10.1007/s00707-018-2161-z · Zbl 1396.74082
[158] Longva, V., Sævik, S.: A Lagrangian-Eulerian formulation for reeling analysis of history-dependent multilayered beams. Comput. Struct. 146, 44-58 (2015). ISSN 0045-7949. doi:10.1016/j.compstruc.2014.09.002. https://www.sciencedirect.com/science/article/pii/S0045794914001941
[159] Longva, V., Sævik, S.: On prediction of torque in flexible pipe reeling operations using a Lagrangian-Eulerian FE framework. Mar. Struct. 46, 229-254 (2016). ISSN 0951-8339. doi:10.1016/j.marstruc.2016.01.004. https://www.sciencedirect.com/science/article/pii/S0951833916000058
[160] Hong, D., Ren, G.: A modeling of sliding joint on one-dimensional flexible medium. Multibody Syst. Dyn. 26(1), 91-106 (2011). ISSN 1573-272X. doi:10.1007/s11044-010-9242-7 · Zbl 1287.70003
[161] Zhang, H., Guo, J.-Q., Liu, J.-P., Ren, G.-X.: An efficient multibody dynamic model of arresting cable systems based on ALE formulation. Mech. Mach. Theory 151, 103892 (2020). ISSN 0094-114X. doi:10.1016/j.mechmachtheory.2020.103892. https://www.sciencedirect.com/science/article/pii/S0094114X20301130
[162] Escalona, J.L.: An arbitrary Lagrangian-Eulerian discretization method for modeling and simulation of reeving systems in multibody dynamics. Mech. Mach. Theory 112 1-21 (2017). ISSN 0094-114X. doi:10.1016/j.mechmachtheory.2017.01.014. https://www.sciencedirect.com/science/article/pii/S0094114X17301179
[163] Escalona, J.L., Orzechowski, G., Mikkola, A.M.: Flexible multibody modeling of reeving systems including transverse vibrations. Multibody Syst. Dyn. 44(2), 107-133 (2018). ISSN 1573-272X. doi:10.1007/s11044-018-9619-6 · Zbl 1407.70009
[164] Hyldahl, P., Mikkola, A., Balling, O.: A thin plate element based on the combined arbitrary Lagrange-Euler and absolute nodal coordinate formulations. Proc. Inst. Mech. Eng., Part K: J. Multi-body Dyn. 227(3), 211-219 (2013). doi:10.1177/1464419313480351
[165] Ghayesh, M.H., Amabili, M., Païdoussis, M.P.: Nonlinear dynamics of axially moving plates. J. Sound Vib. 332(2), 391-406 (2013). ISSN 0022-460X. doi:10.1016/j.jsv.2012.08.013. https://www.sciencedirect.com/science/article/pii/S0022460X12006347
[166] Vetyukov, Y., Finite element modeling of Kirchhoff-Love shells as smooth material surfaces, ZAMM—J. Appl. Math. Mech./Z. Angew. Math. Mech., 94, 1-2, 150-163 (2014) · Zbl 1432.74209 · doi:10.1002/zamm.201200179
[167] Wang, X.: Numerical analysis of moving orthotropic thin plates. Comput. Struct. 70(4), 467-486 (1999). ISSN 0045-7949. doi:10.1016/S0045-7949(98)00161-8. https://www.sciencedirect.com/science/article/pii/S0045794998001618 · Zbl 0982.74555
[168] Kim, J., Cho, J., Lee, U., Park, S.: Modal spectral element formulation for axially moving plates subjected to in-plane axial tension. Comput. Struct. 81(20), 2011-2020 (2003). ISSN 0045-7949. doi:10.1016/S0045-7949(03)00229-3. https://www.sciencedirect.com/science/article/pii/S0045794903002293
[169] Vetyukov, Y., Gruber, P.G., Krommer, M.: Nonlinear model of an axially moving plate in a mixed Eulerian-Lagrangian framework. Acta Mech. 227(10), 2831-2842 (2016). ISSN 1619-6937. doi:10.1007/s00707-016-1651-0 · Zbl 1380.74004
[170] Vetyukov, Yu; Gruber, PG; Krommer, M.; Gerstmayr, J.; Gafur, I.; Winter, G., Mixed Eulerian-Lagrangian description in materials processing: deformation of a metal sheet in a rolling mill, Int. J. Numer. Methods Eng., 109, 10, 1371-1390 (2017) · Zbl 1378.74015 · doi:10.1002/nme.5314
[171] Kocbay, E., Scheidl, J., Riegler, F., Leonhartsberger, M., Lamprecht, M., Vetyukov, Y.: Mixed Eulerian-Lagrangian modelling of sheet metal roll forming. Thin-Walled Structures (2023) (under review)
[172] Schmidrathner, C., Vetyukov, Y.: Non-material finite elements for spatial deformations of belts. In: Altenbach, H., Irschik, H., Matveenko, V.P. (eds.) Contributions to Advanced Dynamics and Continuum Mechanics, pp. 227-242. Springer, Cham (2019). ISBN 978-3-030-21251-3. doi:10.1007/978-3-030-21251-3_13 · Zbl 1520.74080
[173] Synka, J., Kainz, A.: A novel mixed Eulerian-Lagrangian finite-element method for steady-state hot rolling processes. Int. J. Mech. Sci. 45(12), 2043-2060 (2003). ISSN 0020-7403. doi:10.1016/j.ijmecsci.2003.12.008. https://www.sciencedirect.com/science/article/pii/S0020740303002388 · Zbl 1112.74540
[174] Kulachenko, A., Gradin, P., Koivurova, H.: Modelling the dynamical behaviour of a paper web. Part i. Comput. Struct. 85(3), 131-147 (2007). ISSN 0045-7949. doi:10.1016/j.compstruc.2006.09.006. https://www.sciencedirect.com/science/article/pii/S0045794906003294
[175] Grundl, K., Schindler, T., Ulbrich, H., Rixen, D.J.: ALE beam using reference dynamics. Multibody Syst. Dyn. 46(2), 127-146 (2019). ISSN 1573-272X. doi:10.1007/s11044-019-09671-7
[176] Simo, J.C.., Laursen, T.A.: An augmented Lagrangian treatment of contact problems involving friction. Comput. Struct. 42(1), 97-116 (1992). ISSN 0045-7949. doi:10.1016/0045-7949(92)90540-G. https://www.sciencedirect.com/science/article/pii/004579499290540G · Zbl 0755.73085
[177] Vetyukov, Y.: Hybrid asymptotic-direct approach to the problem of finite vibrations of a curved layered strip. Acta Mech. 223(2), 371-385 (2012). ISSN 1619-6937. doi:10.1007/s00707-011-0562-3 · Zbl 1398.74132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.