×

\( G\)-expectation approach to stochastic ordering. (English) Zbl 1500.91137

Summary: This paper studies stochastic ordering under nonlinear expectations \(\mathcal{E}_{\mathcal{G}}\) generated by solutions of \( G \)-backward stochastic differential equations (\(G \)-BSDEs) defined on \( G \)-expectation spaces. We derive sufficient conditions for the convex, increasing convex, and monotonic \( G \)-stochastic orderings of \( G \)-diffusion processes at terminal time. Our approach relies on comparison properties for \( G \)-forward-backward stochastic differential equations (\(G\)-FBSDEs) and on relevant extensions of convexity, monotonicity and continuous dependence properties for the solutions of associated Hamilton-Jacobi-Bellman (HJB) equations. Applications of \( G \)-stochastic ordering to contingent claim superhedging price comparison under ambiguous coefficients are provided.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
60E15 Inequalities; stochastic orderings
60H30 Applications of stochastic analysis (to PDEs, etc.)
60G65 Nonlinear processes (e.g., \(G\)-Brownian motion, \(G\)-Lévy processes)
Full Text: DOI

References:

[1] O. Alvarez; J.-M. Lasry; P.-L. Lions, Convex viscosity solutions and state constraints, J. Math. Pures Appl. (9), 76, 265-288 (1997) · Zbl 0890.49013 · doi:10.1016/S0021-7824(97)89952-7
[2] M. Arnaudon; J.-C. Breton; N. Privault, Convex ordering for random vectors using predictable representation, Potential Anal., 29, 327-349 (2008) · Zbl 1151.60007 · doi:10.1007/s11118-008-9100-x
[3] F. Belzunce, C. Martínez-Riquelme and J. Mulero, An Introduction to Stochastic Orders, Academic Press, 2016. · Zbl 1366.60001
[4] J. Bergenthum; L. Rüschendorf, Comparison of option prices in semimartingale models, Finance Stoch., 10, 222-249 (2006) · Zbl 1101.91028 · doi:10.1007/s00780-006-0001-9
[5] J. Bergenthum; L. Rüschendorf, Comparison of semimartingales and Lévy processes, Ann. Probab., 35, 228-254 (2007) · Zbl 1178.60035 · doi:10.1214/009117906000000386
[6] F. Biagini; J. Mancin; T. M. Brandis, Robust mean-variance hedging via \(G\)-expectation, Stochastic Process. Appl., 129, 1287-1325 (2019) · Zbl 1478.60191 · doi:10.1016/j.spa.2018.04.007
[7] B. Bian; P. Guan, Convexity preserving for fully nonlinear parabolic integro-differential equations, Methods Appl. Anal., 15, 39-51 (2008) · Zbl 1225.35057 · doi:10.4310/MAA.2008.v15.n1.a5
[8] B. Bian; P. Guan, A microscopic convexity principle for nonlinear partial differential equations, Invent. Math., 177, 307-335 (2009) · Zbl 1168.35010 · doi:10.1007/s00222-009-0179-5
[9] S. N. Cohen, S. L. Ji and S. Peng, Sublinear expectations and martingales in discrete time, preprint, arXiv: 1104.5390v1, 2011.
[10] M. Denuit, J. Dhaene, M. Goovaerts and R. Kaas, Actuarial Theory for Dependent Risks: Measures, Orders and Models, Wiley, 2005.
[11] J. Douglas Jr.; J. Ma; P. Protter, Numerical methods for forward-backward stochastic differential equations, Ann. Appl. Probab., 6, 940-968 (1996) · Zbl 0861.65131 · doi:10.1214/aoap/1034968235
[12] N. El Karoui; M. Jeanblanc-Picqué; S. E. Shreve, Robustness of the Black and Scholes formula, Math. Finance, 8, 93-126 (1998) · Zbl 0910.90008 · doi:10.1111/1467-9965.00047
[13] F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by \(G\)-Brownian motion, Stochastic Process. Appl., 119, 3356-3382 (2009) · Zbl 1176.60043 · doi:10.1016/j.spa.2009.05.010
[14] Y. Giga; S. Goto; H. Ishii; M.-H. Sato, Comparison principle and convexity properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J., 40, 443-470 (1991) · Zbl 0836.35009 · doi:10.1512/iumj.1991.40.40023
[15] D. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. · Zbl 1042.35002
[16] M. Grigorova, Stochastic dominance with respect to a capacity and risk measures, Stat. Risk Model., 31, 259-295 (2014) · Zbl 1310.60015 · doi:10.1515/strm-2014-1167
[17] M. Grigorova, Stochastic orderings with respect to a capacity and an application to a financial optimization problem, Stat. Risk Model., 31, 183-213 (2014) · Zbl 1291.60040 · doi:10.1515/strm-2013-1151
[18] A. A. Gushchin; È. Mordecki, Bounds on option prices for semimartingale market models, Proc. Steklov Inst. Math., 237, 73-113 (2002) · Zbl 1113.91319
[19] M. Hu and S. Ji, A note on pricing of contingent claims under G-expectation, preprint, arXiv: 1303.4274, 2013.
[20] M. Hu; S. Ji; S. Peng; Y. Song, Backward stochastic differential equations driven by \(G\)-Brownian motion, Stochastic Process. Appl., 124, 759-784 (2014) · Zbl 1300.60074 · doi:10.1016/j.spa.2013.09.010
[21] M. Hu; S. Ji; S. Peng; Y. Song, Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by \(G\)-Brownian motion, Stochastic Process. Appl., 124, 1170-1195 (2014) · Zbl 1300.60075 · doi:10.1016/j.spa.2013.10.009
[22] M. Hu; S. Ji; S. Yang, A stochastic recursive optimal control problem under the \(G\)-expectation framework, Appl. Math. Optim., 70, 253-278 (2014) · Zbl 1308.93225 · doi:10.1007/s00245-014-9242-8
[23] Z. Hu; Q. Zhou, Convergences of random variables under sublinear expectations, Chinese Ann. Math. Ser. B, 40, 39-54 (2019) · Zbl 1405.60030 · doi:10.1007/s11401-018-0116-2
[24] E. R. Jakobsen; K. H. Karlsen, Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations, J. Differential Equations, 183, 497-525 (2002) · Zbl 1086.35061 · doi:10.1006/jdeq.2001.4136
[25] Th. Klein; Y. Ma; N. Privault, Convex concentration inequalities via forward-backward stochastic calculus, Electron. J. Probab., 11, 486-512 (2006) · Zbl 1112.60034 · doi:10.1214/EJP.v11-332
[26] N. V. Krylov, Boundedly nonhomogeneous elliptic and parabolic equations, Math. USSR, Izv., 20, 459-492 (1983) · Zbl 0529.35026
[27] H. Levy, Stochastic Dominance: Investment Decision Making under Uncertainty, Springer, Cham, 2016.
[28] P.-L. Lions; M. Musiela, Convexity of solutions of parabolic equations, C. R. Math. Acad. Sci. Paris, 342, 915-921 (2006) · Zbl 1096.35006 · doi:10.1016/j.crma.2006.02.014
[29] S. Ly; N. Privault, Stochastic orderings by \(g\)-expectations, Probability, Uncertainty and Quantitative Risk, 6, 61-98 (2021) · Zbl 1486.60035 · doi:10.3934/puqr.2021004
[30] Y. Mishura and G. Shevchenko, Theory and Statistical Applications of Stochastic Processes, John Wiley & Sons, 2017. · Zbl 1375.60006
[31] A. M{ü}ller and D. Stoyan, Comparison Methods for Stochastic Models and Risks, Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester, 2002. · Zbl 0999.60002
[32] S. Peng, Nonlinear expectations, nonlinear evaluations and risk measures, In Stochastic Methods in Finance, volume 1856 of Lecture Notes in Math., pages 165-253. Springer, Berlin, 2004. · Zbl 1127.91032
[33] S. Peng, \(G\)-Brownian motion and dynamic risk measure under volatility uncertainty, preprint, arXiv: 0711.2834, 2007.
[34] S. Peng, \(G\)-expectation, \(G\)-Brownian motion and related stochastic calculus of Itô type, In Stochastic Analysis and Applications, volume 2 of Abel Symp., pages 541-567. Springer, Berlin, 2007. · Zbl 1131.60057
[35] S. Peng, A new central limit theorem under sublinear expectations, preprint, arXiv: 0803.2656, 2008.
[36] S. Peng, Nonlinear Expectations and Stochastic Calculus under Uncertainty, volume 95 of Probability Theory and Stochastic Modelling, Springer, Berlin, 2019. · Zbl 1427.60004
[37] S. Peng, S. Yang and J. Yao, Improving Value-at-Risk prediction under model uncertainty, Journal of Financial Econometrics, 2020. arXiv: 1805.03890..
[38] S. Perrakis, Stochastic Dominance Option Pricing: An Alternative Approach to Option Market Research, Springer, 2019.
[39] M. Shaked and J. G. Shanthikumar, Stochastic Orders, Springer, 2007. · Zbl 1111.62016
[40] Y. Song, Normal approximation by Stein’s method under sublinear expectations, Stochastic Process. Appl., 130, 2838-2850 (2020) · Zbl 1434.60078 · doi:10.1016/j.spa.2019.08.005
[41] Y. Song, Stein’s method for law of large numbers under sublinear expectations, Probab. Uncertain. Quant. Risk, 6 (2021), 199-212. arXiv: 1904.04674, 2019. · Zbl 1497.60028
[42] S. Sriboonchita, W.-K. Wong, S. Dhompongsa and H. T. Nguyen, Stochastic Dominance and Applications to Finance, Risk and Economics, Chapman & Hall/CRC, 2009.
[43] D. Tian; L. Jiang, Uncertainty orders on the sublinear expectation space, Open Math., 14, 247-259 (2016) · Zbl 1346.60013 · doi:10.1515/math-2016-0023
[44] N. Touzi, Stochastic Control Problems, Viscosity Solutions and Application to Finance, Scuola Normale Superiore, 2004. · Zbl 1076.93001
[45] J. Urbas, Lecture on second order linear partial differential equations, In Instructional Workshop on Analysis and Geometry, Part 1, volume 34 of Proceedings of the Centre for Mathematics and its Applications, pages 39-75, Canberra, 1996. Centre for Mathematics and its Applications, Mathematical Sciences Institute, The Australian National University.
[46] J. Vorbrink, Financial markets with volatility uncertainty, J. Math. Econom., 53, 64-78 (2014) · Zbl 1305.91232 · doi:10.1016/j.jmateco.2014.05.008
[47] Y. Xu, Backward stochastic differential equations under super linear \(G\)-expectation and associated Hamilton-Jacobi-Bellman equations, preprint, arXiv: 1009.1042, 2010.
[48] D. Zhang and Z. Chen, Stability theorem for stochastic differential equations driven by \(G\)-Brownian motion, An. ŞtiinŞ. Univ. “Ovidius” ConstanŞa Ser. Mat., 19 (2011), 205-221. · Zbl 1274.60191
[49] J. Zhang, Backward Stochastic Differential Equations, volume 86 of Probability Theory and Stochastic Modelling, Springer, New York, 2017. · Zbl 1390.60004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.