×

Considering fluctuation energy as a measure of gyrokinetic turbulence. (English) Zbl 1448.82040

Summary: In gyrokinetic theory, there are two quadratic measures of fluctuation energy, left invariant under nonlinear interactions, that constrain turbulence. In a recent work [G. G. Plunk and T. Tatsuno, “Energy transfer and dual cascade in kinetic magnetized plasma turbulence”, Phys. Rev. Lett. 106, No. 16, Article ID 165003, 4 p. (2011; doi:10.1103/PhysRevLett.106.165003)] we reported on the novel consequences that this constraint has for the direction and locality of spectral energy transfer. This paper builds on that previous work. We provide a detailed analysis in support of the results of Plunk and Tatsuno [loc. cit.], but significantly broaden the scope and use additional methods to address the problem of energy transfer. The perspective taken here is that the fluctuation energies are not merely formal invariants of an idealized model (two-dimensional gyrokinetics [G. G. Plunk et al., J. Fluid Mech. 664, 407–435 (2010; Zbl 1221.76108)] but also general measures of gyrokinetic turbulence, i.e. quantities that can be used to predict the behavior of turbulence. Although many questions remain open, this paper collects evidence in favor of this perspective by demonstrating in several contexts that constrained spectral energy transfer governs the dynamics.

MSC:

82D10 Statistical mechanics of plasmas
81V60 Mono-, di- and multipole moments (EM and other), gyromagnetic relations
82B40 Kinetic theory of gases in equilibrium statistical mechanics
76F02 Fundamentals of turbulence
76F55 Statistical turbulence modeling

Citations:

Zbl 1221.76108

Software:

AstroGK

References:

[1] Abel I G, Plunk G G, Wang E, Barnes M, Cowley S C and Schekochihin A A 2012 Multiscale gyrokinetics for rotating tokamaks. I. Fluctuations and transport Rep. Prog. Phys. submitted
[2] Bañón Navarro A, Morel P, Albrecht-Marc M, Carati D, Merz F, Gorler T and Jenko F 2011a Free energy balance in gyrokinetic turbulence Phys. Plasmas18 092303 · doi:10.1063/1.3632077
[3] Bañón Navarro A, Morel P, Albrecht-Marc M, Carati D, Merz F, Görler T and Jenko F 2011b Free energy cascade in gyrokinetic turbulence Phys. Rev. Lett.106 055001 · doi:10.1103/PhysRevLett.106.055001
[4] Barnes M, Parra F I and Schekochihin A A 2011 Critically balanced ion temperature gradient turbulence in fusion plasmas Phys. Rev. Lett.107 115003 · doi:10.1103/PhysRevLett.107.115003
[5] Batchelor G K 1969 Computation of the energy spectrum in homogeneous two-dimensional turbulence Phys. Fluids12 II-233 · Zbl 0217.25801 · doi:10.1063/1.1692443
[6] Brizard A J 2000 Variational principle for nonlinear gyrokinetic Vlasov-Maxwell equations Phys. Plasmas7 4816-22 · doi:10.1063/1.1322063
[7] Brizard A J 2010 Exact energy conservation laws for full and truncated nonlinear gyrokinetic equations Phys. Plasmas17 042303 · doi:10.1063/1.3374428
[8] Brizard A J and Hahm T S 2007 Foundations of nonlinear gyrokinetic theory Rev. Mod. Phys.79 421-68 · Zbl 1205.76309 · doi:10.1103/RevModPhys.79.421
[9] Candy J and Waltz R E 2006 Velocity-space resolution, entropy production and upwind dissipation in Eulerian gyrokinetic simulations Phys. Plasmas13 032310 · doi:10.1063/1.2184069
[10] Candy J, Waltz R E, Parker S E and Chen Y 2006 Relevance of the parallel nonlinearity in gyrokinetic simulations of tokamak plasmas Phys. Plasmas13 074501 · doi:10.1063/1.2220536
[11] Carati D 2010 personal communication
[12] Cohen B I, Williams T J, Dimits A M and Byers J A 1993 Gyrokinetic simulations of e × b velocity-shear effects on ion-temperature-gradient modes Phys. Fluids B 5 2967-80 · doi:10.1063/1.860683
[13] Daniel Dubin H E, John Krommes A, Oberman C and Lee W W 1983 Nonlinear gyrokinetic equations Phys. Fluids26 3524-35 · Zbl 0544.76158 · doi:10.1063/1.864113
[14] Diamond P H, Itoh S-I, Itoh K and Hahm T S 2005 Zonal flows in plasma—a review Plasma Phys. Control. Fusion47 R35
[15] Dorland W D 1993 Gyrofluid models of plasma turbulence PhD Thesis Princeton University
[16] Dorland W and Hammett G W 1993 Gyrofluid turbulence models with kinetic effects Phys. Fluids B 5 812-35 · doi:10.1063/1.860934
[17] Edwards S F and Taylor J B 1974 Negative temperature states of two-dimensional plasmas and vortex fluids Proc. R. Soc. Lond. A 336 257-71 · doi:10.1098/rspa.1974.0018
[18] Fjørtoft R 1953 On the changes in the spectral distribution of kinetic energy for two-dimensional non-divergent flow Tellus5 225 · doi:10.1111/j.2153-3490.1953.tb01051.x
[19] Frenkel A L 1991 Stability of an oscillating Kolmogorov flow Phys. Fluids A 3 1718-29 · Zbl 0745.76023 · doi:10.1063/1.857951
[20] Frieman E A and Chen L 1982 Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria Phys. Fluids25 502-8 · Zbl 0506.76133 · doi:10.1063/1.863762
[21] Hallatschek K 2004 Thermodynamic potential in local turbulence simulations Phys. Rev. Lett.93 125001 · doi:10.1103/PhysRevLett.93.125001
[22] Hatch D R, Terry P W, Jenko F, Merz F and Nevins W M 2011 Saturation of gyrokinetic turbulence through damped eigenmodes Phys. Rev. Lett.106 115003 · doi:10.1103/PhysRevLett.106.115003
[23] Higgins J R 1977 Completeness and Basis Properties of Sets of Special Functions (Cambridge: Cambridge University Press) · Zbl 0351.42021 · doi:10.1017/CBO9780511566189
[24] Howes G G 2008 Inertial range turbulence in kinetic plasmas Phys. Plasmas15 055904 · doi:10.1063/1.2889005
[25] Howes G G, Cowley S C, Dorland W, Hammett G W, Quataert E and Schekochihin A A 2008 A model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind J. Geophys. Res.113 A05103 · doi:10.1029/2007JA012665
[26] Kraichnan R H 1967 Inertial ranges in two-dimensional turbulence Phys. Fluids10 1417-23 · doi:10.1063/1.1762301
[27] Kraichnan R H and Montgomery D 1980 Two-dimensional turbulence Rep. Prog. Phys.43 547 · doi:10.1088/0034-4885/43/5/001
[28] Krommes J A and Hu G 1994 The role of dissipation in the theory and simulations of homogeneous plasma turbulence and resolution of the entropy paradox Phys. Plasmas1 3211-38 · doi:10.1063/1.870475
[29] Leith C E 1968 Diffusion approximation for two-dimensional turbulence Phys. Fluids11 671-2 · doi:10.1063/1.1691968
[30] Leith C E 1984 Minimum enstrophy vortices Phys. Fluids27 1388-95 · Zbl 0572.76046 · doi:10.1063/1.864781
[31] Manfredi G, Roach C M and Dendy R O 2001 Zonal flow and streamer generation in drift turbulence Plasma Phys. Control. Fusion43 825-37 · doi:10.1088/0741-3335/43/6/307
[32] Meshalkin L D and Sinai Y G 1961 Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid J. Appl. Math. Mech.6 1140-3
[33] Montgomery D and Joyce G 1974 Statistical mechanics of ‘negative temperature’ states Phys. Fluids17 1139-45 · doi:10.1063/1.1694856
[34] Numata R et al 2010 Astrogk: astrophysical gyrokinetics code J. Comput. Phys.229 9347-72 · Zbl 1204.85021 · doi:10.1016/j.jcp.2010.09.006
[35] Nakata M, Watanabe T-H and Sugama H 2012 Nonlinear entropy transfer via zonal flows in gyrokinetic plasma turbulence Phys. Plasmas19 022303 · doi:10.1063/1.3675855
[36] Onsager L 1949 Nuovo Cimento Suppl.6 279 · doi:10.1007/BF02780991
[37] Parra F I and Calvo I 2011 Phase-space Lagrangian derivation of electrostatic gyrokinetics in general geometry Plasma Phys. Control. Fusion53 045001
[38] Parra F I and Catto P J 2008 Limitations of gyrokinetics on transport time scales Plasma Phys. Control. Fusion50 065014
[39] Plunk G 2007 Gyrokinetic secondary instability theory for electron and ion temperature gradient driven turbulence Phys. Plasmas14 112308 · doi:10.1063/1.2812703
[40] Plunk G G et al 2010 Two-dimensional gyrokinetic turbulence J. Fluid Mech.664 407-35 · Zbl 1221.76108 · doi:10.1017/S002211201000371X
[41] Plunk G G and Tatsuno T 2011 Energy transfer and dual cascade in kinetic magnetized plasma turbulence Phys. Rev. Lett.106 165003 · doi:10.1103/PhysRevLett.106.165003
[42] Rogers B N, Dorland W and Kotschenreuther M 2000 Generation and stability of zonal flows in ion-temperature-gradient mode turbulence Phys. Rev. Lett.85 5336-9 · doi:10.1103/PhysRevLett.85.5336
[43] Rosenbluth M N and Hinton F L 1998 Poloidal flow driven by ion-temperature-gradient turbulence in tokamaks Phys. Rev. Lett.80 724-7 · doi:10.1103/PhysRevLett.80.724
[44] Schekochihin A A et al 2008 Gyrokinetic turbulence: a nonlinear route to dissipation through phase space Plasma Phys. Control. Fusion50 124024 · doi:10.1088/0741-3335/50/12/124024
[45] Schekochihin A A et al 2009 Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas Astrophys. J. Suppl.182 310-77 · doi:10.1088/0067-0049/182/1/310
[46] Smolyakov A I, Diamond P H and Malkov M 2000 Coherent structure phenomena in drift wave – zonal flow turbulence Phys. Rev. Lett.84 491-4 · doi:10.1103/PhysRevLett.84.491
[47] Sugama H 2000 Gyrokinetic field theory Phys. Plasmas7 466-80 · doi:10.1063/1.873832
[48] Sugama H and Horton W 1995 Neoclassical and anomalous transport in axisymmetric toroidal plasmas with electrostatic turbulence Phys. Plasmas2 2989-3006 · doi:10.1063/1.871197
[49] Sugama H, Okamoto M, Horton W and Wakatani M 1996a Transport processes and entropy production in toroidal plasmas with gyrokinetic electromagnetic turbulence Phys. Plasmas3 2379-94 · doi:10.1063/1.871922
[50] Sugama H, Okamoto M, Horton W and Wakatani M 1996b Transport processes and entropy production in toroidal plasmas with gyrokinetic electromagnetic turbulence Phys. Plasmas3 2379-94 · doi:10.1063/1.871922
[51] Tatsuno T et al 2009 Nonlinear phase mixing and phase-space cascade of entropy in gyrokinetic plasma turbulence Phys. Rev. Lett.103 015003 · doi:10.1103/PhysRevLett.103.015003
[52] Tatsuno T et al 2010 Gyrokinetic simulation of entropy cascade in two-dimensional electrostatic turbulence J. Plasma Fusion Res.9 509
[53] Tatsuno T et al 2012 Freely decaying turbulence in two-dimensional electrostatic gyrokinetics Phys. Plasmas submitted
[54] Waltz R E and Holland C 2008 Numerical experiments on the drift wave – zonal flow paradigm for nonlinear saturation Phys. Plasmas15 122503 · doi:10.1063/1.3033206
[55] Zhu J Z 2011 private communication
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.