The role of dissipation in the theory and simulations of homogeneous plasma slices is analyzed with the goal of understanding the ‘‘entropy paradox,’’ which is that a certain positive‐definite functional of the perturbed distribution function increases without bound in some situations even though the potentials appear to have achieved a steady state. Confusion arises from an interchange of the limits t→∞ and η→0, where η is a measure of dissipation. It is argued that it is never strictly correct to neglect η; the averaged dissipation approaches a nonzero limit (proportional to the averaged flux) even as η→0. An exactly soluble model is worked out to illustrate the point. In collisionless particle simulations, the particle and heat fluxes may nevertheless saturate with their correct values. The relations of kinetic and fluid entropy balances are discussed with the aid of (1) the Terry–Horton model for collisionless drift waves, and (2) a simple model of the ion‐temperature‐gradient‐driven mode. The rationale for simulations of homogeneous slices of plasma is given, with particular emphasis being placed on the relationship of dissipation in such slices to dissipation in a complete physical domain.

1.
R. H.
Kraichnan
,
Phys. Rev.
109
,
1407
(
1958
).
2.
R. Z. Sagdeev and A. A. Galeev, in Nonlinear Plasma Theory, edited by T. M. O’Neil and D. L. Book (Benjamin, New York, 1969).
3.
W.
Lee
and
W.
Tang
,
Phys. Fluids
31
,
612
(
1988
).
4.
A.
Hasegawa
and
M.
Wakatani
,
Phys. Rev. Lett.
50
,
682
(
1983
).
5.
S.
Rath
and
W. W.
Lee
,
Bull. Am. Phys. Soc.
37
,
1508
(
1992
).
6.
W. W.
Lee
,
S. E.
Parker
,
J. V. W.
Reynders
,
R. A.
Santoro
,
S.
Rath
, and
J. C.
Cummings
,
Bull. Am. Phys. Soc.
37
,
1590
(
1992
).
7.
S.
Rath
and
W. W.
Lee
,
Bull. Am. Phys. Soc.
38
,
2100
(
1993
).
8.
G. W.
Hammett
and
F. W.
Perkins
,
Phys. Rev. Lett.
64
,
3019
(
1990
).
9.
G. W.
Hammett
,
M. A.
Beer
,
W.
Dorland
,
S. C.
Cowley
, and
S. A.
Smith
,
Plasma Phys. Controlled Fusion
35
,
973
(
1993
).
10.
J. A. Krommes, in Handbook of Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1984), Vol. 2, Chap. 5.5, p. 183.
11.
M.
Kotschenreuther
,
Bull. Am. Phys. Soc.
34
,
2107
(
1988
).
12.
S. E.
Parker
and
W. W.
Lee
,
Phys. Fluids B
5
,
77
(
1993
).
13.
G.
Hu
and
J. A.
Krommes
,
Phys. Plasmas
1
,
863
(
1994
).
14.
In the general case (see Ref. 13), Eq. (5) involves a second weight factor. The formula is correct for the usual situation in which the fluctuations are small.
15.
D. H. E.
Dubin
,
J. A.
Krommes
,
C. R.
Oberman
, and
W. W.
Lee
,
Phys. Fluids
26
,
3524
(
1983
).
16.
We are indebted to Dr. Scott Parker for emphasizing this point (private communication, 1993).
17.
E. T.
Jaynes
,
IEEE Trans. Sys. Sci. Cyber.
SSC-4
,
227
(
1968
), reprinted in E. T. Jaynes, Papers on Probability, Statistics, and Statistical Physics, edited by R. D. Rosenkrantz (Kluwer Academic, Dordrecht, 1989), p. 116.
18.
W. W.
Lee
,
Phys. Fluids
26
,
556
(
1983
).
19.
L. P.
Kadanoff
and
P. C.
Martin
,
Ann. Phys.
24
,
419
(
1963
).
20.
G. I.
Taylor
,
Proc. R. Soc. London Ser. A
151
,
421
(
1935
), reprinted in Turbulence: Classic Papers on Statistical Theory, edited by S. K. Friedlander and L. Topper (Interscience, New York, 1961), p. 18.
21.
H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, MA, 1972).
22.
R. H.
Kraichnan
,
Phys. Fluids
10
,
1417
(
1967
).
23.
G. K.
Batchelor
,
J. Fluid Mech.
5
,
113
(
1959
).
24.
The relation of the Batchelor spectrum to the so-called “clump” theory is described by
J. A.
Krommes
,
Phys. Fluids
29
,
2756
(
1986
).
25.
Conditions for the forced Hasegawa-Mima model to be in the strongturbulence regime are described by
M.
Ottaviani
and
J.
Krommes
,
Phys. Rev. Lett.
69
,
2923
(
1992
).
26.
M. Ottaviani (private communication, 1991).
27.
J. Bowman, Ph.D. thesis, Princeton University, 1992.
28.
S. A. Smith (private communication, 1994).
29.
R.
Kubo
,
J. Phys. Soc. Jpn.
17
,
1100
(
1962
).
30.
R. H.
Kraichnan
,
J. Math. Phys.
2
,
124
(
1961
).
31.
R. H. Kraichnan, in Current Trends in Turbulence Research, edited by H. Branover, M. Mond, and Y. Unger (American Institute of Aeronautics and Astronautics, Washington, DC, 1988), p. 198.
32.
G. E. Uhlenbeck and L. S. Ornstein, in Selected Papers on Noise and Stochastic Processes, edited by N. Wax (Dover, New York, 1954), p. 93.
33.
J. A.
Krommes
and
R. A.
Smith
,
Ann. Phys.
177
,
246
(
1987
).
34.
J.
Bowman
,
J. A.
Krommes
, and
M.
Ottaviani
,
Phys. Fluids B
5
,
3558
(
1993
).
35.
T. H.
Dupree
and
D. J.
Tetreault
,
Phys. Fluids
21
,
425
(
1978
).
36.
W. M.
Nevins
,
Phys. Fluids
22
,
1681
(
1979
).
37.
W. Horton, in Handbook of Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1984), Vol. 2, Chap. 6.4.
38.
J. A.
Krommes
and
C.-B.
Kim
,
Phys. Fluids
31
,
869
(
1988
).
39.
P.
Terry
and
W.
Horton
,
Phys. Fluids
25
,
491
(
1982
).
40.
J. A.
Krommes
,
Phys. Rev. Lett.
70
,
3067
(
1993
).
41.
J. A.
Krommes
,
Phys. Fluids B
5
,
1066
(
1993
).
42.
A.
Hascgawa
and
K.
Mima
,
Phys. Fluids
12
,
87
(
1978
).
43.
M.
Wakatani
and
A.
Hasegawa
,
Phys. Fluids
27
,
611
(
1984
).
44.
T. H.
Dupree
,
Phys. Fluids
10
,
1049
(
1967
).
45.
W. M. Nevins, Ph.D. thesis, University of California at Berkeley, 1979.
46.
W. M.
Nevins
,
Phys. Fluids
22
,
1667
(
1979
).
47.
B. B. Kadomtsev and O. P. Pogutse, Reviews of Plasma Physics, Vol. 5 (Consultants Bureau, New York, 1970), p. 249.
48.
W.
Horton
,
R. D.
Estes
, and
D.
Biskamp
,
Plasma Phys.
22
,
663
(
1980
).
49.
W. D. Dorland, Ph.D. thesis, Princeton University, 1993.
50.
W. Dorland, G. W. Hammett, T. S. Hahm, and M. A. Beer, in U.S.-Japan Workshop on Ion Temperature Gradient-Driven Turbulent Transport, edited by W. Horton, M. Wakatani, and A. Wootton (American Institute of Physics, New York, 1994), p. 344.
51.
G. S.
Lee
and
P. H.
Diamond
,
Phys. Fluids
29
,
3291
(
1986
).
52.
N.
Mattor
and
P. H.
Diamond
,
Phys. Fluids
31
,
1180
(
1988
).
53.
S.
Hamaguchi
and
W.
Horton
,
Phys. Fluids B
2
,
1833
(
1990
).
54.
W. W. Lee (private communication, 1993).
55.
W.
Dorland
and
G. W.
Hammett
,
Phys. Fluids B
5
,
812
(
1993
).
56.
G. W.
Hammett
,
W.
Dorland
, and
F. W.
Perkins
,
Phys. Fluids B
4
,
2052
(
1992
).
57.
S. C.
Cowley
,
R. M.
Kulsrud
, and
R.
Sudan
,
Phys. Fluids B
3
,
2767
(
1991
).
58.
When one is considering distribution functions dependent on both υ and υ the actual wave number that arises is κ(v) = κn+(υ2−3/2κT. In the model that is described by Eq. (14), finite-gyroradius effects are neglected, so an integration over υ can be performed. This leads to the effective κ(υ) defined in Eq. (211).
59.
We take δne,k/n¯ = δΦk, thereby ignoring a potentially important modification 9.50 for the k| = 0 component.
60.
J. A. Krommes, Ph.D. thesis, Princeton University, 1975.
61.
J. A.
Krommes
and
G.
Hu
,
Phys. Fluids B
5
,
3908
(
1993
).
62.
Those early gyrokinetic simulations had somewhat limited resolution (only the lowest ky mode was unstable) and appeared to predict coherent nonlinear structures. They are therefore probably not representative of the more turbulent cases described by larger simulations; cf. the recent slab results of
B. I.
Cohen
,
T. J.
Williams
,
A. M.
Dimits
, and
J. A.
Byers
,
Phys. Fluids B
5
,
2967
(
1993
).
63.
S. E.
Parker
,
W.
Dorland
,
R. A.
Santoro
,
M. A.
Beer
,
Q. P.
Liu
,
W. W.
Lee
, and
G. W.
Hammett
,
Phys. Plasmas
1
,
1461
(
1994
).
64.
C.-B.
Kim
and
J. A.
Krommes
,
Phys. Rev. A
42
,
7487
(
1990
).
65.
F. H.
Busse
,
Adv. Applied Mech.
18
,
77
(
1978
).
66.
This remark assumes that μ is a strict constant, independent of physical parameters such as the temperature. In practice, this assumption is poor. However, it is adequate and appropriate for this level of conceptual discussion.
67.
The usual way of “imposing” a uniform gradient is just to write equations for the fluctuations in which the background gradient appears as a constant, not evolved self-consistently. Such equations are easily formulated and solved for fluid models, or for multiple-scale particle simulations.
68.
A. J.
Wootton
,
B. A.
Carreras
,
H.
Matsumoto
,
K.
McGuire
,
W. A.
Peebles
,
Ch. P.
Ritz
,
P. W.
Terry
, and
S. J.
Zweben
,
Phys. Fluids B
2
,
2879
(
1990
).
69.
C.-B.
Kim
and
J. A.
Krommes
,
J. Stat. Phys.
53
,
1103
(
1988
).
70.
A. Dimits (private communication, 1993).
71.
G. Hammett (private communication, 1994).
72.
A.
Dimits
and
B.
Cohen
,
Phys. Rev. E
49
,
709
(
1994
).
73.
N.
Mattor
,
Phys. Fluids B
4
,
3952
(
1992
).
74.
As discussed in Refs. 9 and 49, the disagreements appear in some weak-turbulence regimes where it is difficult to resolve narrow resonances in velocity space with just a few fluid moments. The trouble may be restricted to a very narrow parameter regime; it seems plausible that the Landau-fluid approach will be more accurate in more typical strong-turbulence regimes, following the scenario outlined at the end of Sec. II D.
75.
T. H.
Dupree
,
Phys. Fluids
9
,
1773
(
1966
).
76.
P. Similon, Ph.D. thesis, Princeton University, 1981.
77.
T. H. Dupree, in Turbulence of Fluids and Plasmas, edited by J. Fox (Polytechnic Press, Brooklyn, NY, 1969), p. 3.
78.
J.-M.
Wersinger
,
J. M.
Finn
, and
E.
Ott
,
Phys. Fluids
23
,
1142
(
1980
).
79.
J. A.
Krommes
,
Phys. Fluids
25
,
1393
(
1982
).
80.
B. B. Kadomtsev, in Plasma Turbulence, edited by M. C. Rusbridge (Academic, New York, 1965).
This content is only available via PDF.
You do not currently have access to this content.