×

Existence and uniqueness results for a class of \(p(x)\)-Kirchhoff-type problems with convection term and Neumann boundary data. (English) Zbl 1491.35203

Summary: We establish an existence and uniqueness results for a homogeneous Neumann boundary value problem involving the \(p(x)\)-Kirchhoff-Laplace operator of the following form \[ \begin{cases} \begin{aligned} &-M\Big (\int_{{\Omega}}\frac{1}{p(x)}(\vert \nabla u\vert^{p(x)}+\vert u\vert^{p(x)})\,dx\Big ) \Big (\text{{div}}(\vert \nabla u\vert^{p(x)-2}\nabla u)-\vert u\vert^{p(x)-2}u\Big )\\ &=f(x, u, \nabla u) && \text{in } , \\ &\vert \nabla u\vert^{p(x)-2}\frac{\partial u}{\partial \eta }=0 && \text{on } \partial{{\Omega}}. \end{aligned} \end{cases} \] where \({{\Omega}}\) is a smooth bounded domain in \(\mathbb{R}^N\), \(\frac{\partial u}{\partial \eta }\) is the exterior normal derivative, \(p(x)\in C_+({\overline{{\Omega} }})\) with \(p(x)\ge 2\). By means of a topological degree of Berkovits for a class of demicontinuous operators of generalized \((S_+)\) type and the theory of the variable exponent Sobolev spaces, under appropriate assumptions on \(f\) and \(M\), we obtain a results on the existence and uniqueness of weak solution to the considered problem.

MSC:

35J62 Quasilinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
Full Text: DOI

References:

[1] Abbassi, A.; Allalou, C.; Kassidi, A., Existence of weak solutions for nonlinear p-elliptic problem by topological degree, Nonlinear Dyn. Syst. Theory., 20, 3, 229-241 (2020) · Zbl 1454.35192
[2] Abbassi, A.; Allalou, C.; Kassidi, A., Existence results for some nonlinear elliptic equations via topological degree methods, J. Elliptic Parabol Equ., 7, 1, 121-136 (2021) · Zbl 1472.35155 · doi:10.1007/s41808-021-00098-w
[3] Aboulaich, R.; Meskine, D.; Souissi, A., New diffusion models in image processing, Comput. Math. Appl., 56, 874-882 (2008) · Zbl 1155.35389 · doi:10.1016/j.camwa.2008.01.017
[4] Acerbi, E.; Mingione, G., Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156, 121-140 (2001) · Zbl 0984.49020 · doi:10.1007/s002050100117
[5] Antontsev, S.; Shmarev, S., A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localization properties of solutions, Nonlinear Anal., 60, 515-545 (2005) · Zbl 1066.35045 · doi:10.1016/j.na.2004.09.026
[6] Berkovits, J., Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J Differ. Equ., 234, 289-310 (2007) · Zbl 1114.47049 · doi:10.1016/j.jde.2006.11.012
[7] Berkovits, J.; Mustonen, V., On the topological degree for mappings of monotone type, Nonlinear Anal., 10, 12, 1373-1383 (1986) · Zbl 0605.47060 · doi:10.1016/0362-546X(86)90108-2
[8] Chen, Y.; Levine, S.; Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66, 1383-1406 (2006) · Zbl 1102.49010 · doi:10.1137/050624522
[9] Cho, Y.J., Chen, Y.Q.: Topological degree theory and applications. CRC Press, (2006) · Zbl 1095.47001
[10] Crandall, M.; Rabinowitz, P., Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Ration. Mech. Anal., 58, 207-218 (1975) · Zbl 0309.35057 · doi:10.1007/BF00280741
[11] Dai, G.; Liu, D., Infinitely many positive solutions for a \(p(x)\)-Kirchhoff-type equation, J. Math. Anal. Appl., 359, 704-710 (2009) · Zbl 1173.35463
[12] Dai, G.; Hao, R., Existence of solutions for a \(p(x)\)-Kirchhoff-type equation, J. Math. Anal. Appl., 359, 275-284 (2009) · Zbl 1172.35401
[13] Dai, G.; Ruyun, M., Solutions for a \(p(x)\)-Kirchhoff type equation with Neumann boundary data, Nonlinear Anal., 12, 5, 2666-2680 (2011) · Zbl 1225.35079
[14] DiBenedetto, E., \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7, 827-850 (1983) · Zbl 0539.35027 · doi:10.1016/0362-546X(83)90061-5
[15] El Ouaarabi, Mohamed; Allalou, Chakir; Melliani, Said, Existence result for Neumann problems with \(p(x)\)-Laplacian-like operators in generalized Sobolev spaces, Rend. Circ. Mat. Palermo, II. Ser (2022)
[16] El Ouaarabi, M., Allalou, C., Melliani, S.: On a class of \(p(x)\)-Laplacian-like Dirichlet problem depending on three real parameters. Arab. J. Math. pp. 1-13 (2022)
[17] El Ouaarabi, M.; Allalou, C.; Melliani, S., Existence of weak solution for a class of \(p(x)\)-Laplacian problems depending on three real parameters with Dirichlet condition, Boletín de la Sociedad Matemática Mexicana, 28, 2, 1-16 (2022) · Zbl 1489.35144
[18] Fan, XL; Zhao, D., On the Spaces \(L^{p(x)}({\Omega} )\) and \(W^{m, p(x)}({\Omega} )\), J Math Anal Appl., 263, 424-446 (2001) · Zbl 1028.46041
[19] Fan, XL, On nonlocal \(p(x)\)-Laplacian Dirichlet problems, Nonlinear Anal., 72, 3314-3323 (2010) · Zbl 1189.35127
[20] Fleckinger, J.; Harrell, E.; Thélin, FD, Boundary behavior and estimates for solutions of equations containing the p-Laplacian, Electron. J. Differ. Equ., 38, 1-19 (1999) · Zbl 0928.35046
[21] Henriques, E.; Urbano, JM, Intrinsic scaling for PDEs with an exponential nonlinearity, Indiana Univ. Math. J., 55, 1701-1722 (2006) · Zbl 1105.35023 · doi:10.1512/iumj.2006.55.2715
[22] Kim, IS; Hong, SJ, A topological degree for operators of generalized \((S_+)\) type, Fixed Point Theory Appl., 1, 1-16 (2015) · Zbl 1361.47018
[23] Kirchhoff, G., Mechanik (1883), Leipzig: Teubner, Leipzig · JFM 08.0542.01
[24] Kováčik, O.; Rákosník, J., On spaces \(L^{p(x)}\) and \(W^{1, p(x)}\), Czechoslovak Math. J., 41, 4, 592-618 (1991) · Zbl 0784.46029
[25] Marcellini, P., Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal., 105, 267-284 (1989) · Zbl 0667.49032 · doi:10.1007/BF00251503
[26] Ouaarabi, ME; Abbassi, A.; Allalou, C., Existence result for a Dirichlet problem governed by nonlinear degenerate elliptic equation in weighted Sobolev spaces, J. Elliptic Parabol Equ., 7, 1, 221-242 (2021) · Zbl 1472.35184 · doi:10.1007/s41808-021-00102-3
[27] Ouaarabi, M.E., Allalou, C., Abbassi, A.: On the Dirichlet Problem for some Nonlinear Degenerated Elliptic Equations with Weight. \(7^{\text{th}}\) International Conference on Optimization and Applications (ICOA), 1-6 (2021) · Zbl 1472.35184
[28] Ouaarabi, ME; Abbassi, A.; Allalou, C., Existence result for a general nonlinear degenerate elliptic problems with measure datum in weighted Sobolev spaces, Int. J. Opt. Appl., 1, 2, 1-9 (2021) · Zbl 1472.35184
[29] Ouaarabi, ME; Abbassi, A.; Allalou, C., Existence and uniqueness of weak solution in weighted Sobolev spaces for a class of nonlinear degenerate elliptic problems with measure data, Int. J. Nonlinear Anal. Appl., 13, 1, 2635-2653 (2021) · Zbl 1472.35184
[30] Ragusa, MA, On weak solutions of ultraparabolic equations, Nonlinear Analysis: Theory, Methods & Applications, 47, 1, 503-511 (2001) · Zbl 1042.35584 · doi:10.1016/S0362-546X(01)00195-X
[31] Ragusa, MA; Razani, A.; Safari, F., Existence of radial solutions for a \(p(x)\)-Laplacian Dirichlet problem, Advances in Difference Equations, 2021, 1, 1-14 (2021) · Zbl 1494.35077
[32] Rajagopal, K. R.; Ru̇zicka, M., Mathematical modeling of electrorheological materials, Continuum Mech. Thermodyn., 13, 1, 59-78 (2001) · Zbl 0971.76100 · doi:10.1007/s001610100034
[33] Razani, A., Two weak solutions for fully nonlinear Kirchhoff-type problem, Filomat, 35, 10, 3267-3278 (2021) · doi:10.2298/FIL2110267R
[34] Ru̇zicka, M.: Electrorheological fuids: modeling and mathematical theory. Springer Science & Business Media, (2000) · Zbl 0968.76531
[35] Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equ., 51, 126-150 (1984) · Zbl 0488.35017 · doi:10.1016/0022-0396(84)90105-0
[36] Zeidler, E., Nonlinear Functional Analysis and its Applications II/B (1990), New York: Springer-Verlag, New York · Zbl 0684.47029
[37] Zhao, D.; Qiang, WJ; Fan, XL, On generalizerd Orlicz spaces \(L^{p(x)}({\Omega} )\)-, J. Gansu Sci., 9, 2, 1-7 (1996)
[38] Zhikov, VVE, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-Izvestiya., 29, 1, 33-66 (1987) · Zbl 0599.49031 · doi:10.1070/IM1987v029n01ABEH000958
[39] Zhikov, VVE, Averaging of functionals of the calculus of variations and elasticity theory, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya., 50, 4, 675-710 (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.