Skip to main content
Log in

Existence and uniqueness results for a class of p(x)-Kirchhoff-type problems with convection term and Neumann boundary data

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

We establish an existence and uniqueness results for a homogeneous Neumann boundary value problem involving the p(x)-Kirchhoff-Laplace operator of the following form

$$\begin{aligned} \displaystyle \left\{ \begin{array}{ll} \displaystyle -M\Big ( \int _{{\Omega} }\frac{1}{p(x)}(\vert \nabla u\vert ^{p(x)}+\vert u\vert ^{p(x)})\,dx\Big ) \Big (\mathrm{{div}}(\vert \nabla u\vert ^{p(x)-2}\nabla u)-\vert u\vert ^{p(x)-2}u\Big )\\ =f(x, u, \nabla u) & \mathrm {i}\mathrm {n}\ ,\\ \vert \nabla u\vert ^{p(x)-2}\frac{\partial u}{\partial \eta }=0 & \mathrm {o}\mathrm {n}\ \partial {{\Omega}} . \end{array}\right. \end{aligned}$$

where \({{\Omega}}\) is a smooth bounded domain in \(\mathbb {R}^{N}\), \(\frac{\partial u}{\partial \eta }\) is the exterior normal derivative, \(p(x)\in C_{+}({\overline{{\Omega} }})\) with \(p(x)\ge 2\). By means of a topological degree of Berkovits for a class of demicontinuous operators of generalized \((S_{+})\) type and the theory of the variable exponent Sobolev spaces, under appropriate assumptions on f and M, we obtain a results on the existence and uniqueness of weak solution to the considered problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbassi, A., Allalou, C., Kassidi, A.: Existence of weak solutions for nonlinear p-elliptic problem by topological degree. Nonlinear Dyn. Syst. Theory. 20(3), 229–241 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Abbassi, A., Allalou, C., Kassidi, A.: Existence results for some nonlinear elliptic equations via topological degree methods. J. Elliptic Parabol Equ. 7(1), 121–136 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aboulaich, R., Meskine, D., Souissi, A.: New diffusion models in image processing. Comput. Math. Appl. 56, 874–882 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Acerbi, E., Mingione, G.: Regularity results for a class of functionals with nonstandard growth. Arch. Ration. Mech. Anal. 156, 121–140 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Antontsev, S., Shmarev, S.: A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localization properties of solutions. Nonlinear Anal. 60, 515–545 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berkovits, J.: Extension of the Leray-Schauder degree for abstract Hammerstein type mappings. J Differ. Equ. 234, 289–310 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berkovits, J., Mustonen, V.: On the topological degree for mappings of monotone type. Nonlinear Anal. 10(12), 1373–1383 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cho, Y.J., Chen, Y.Q.: Topological degree theory and applications. CRC Press, (2006)

  10. Crandall, M., Rabinowitz, P.: Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems. Arch. Ration. Mech. Anal. 58, 207–218 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dai, G., Liu, D.: Infinitely many positive solutions for a \(p(x)\)-Kirchhoff-type equation. J. Math. Anal. Appl. 359, 704–710 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Dai, G., Hao, R.: Existence of solutions for a \(p(x)\)-Kirchhoff-type equation. J. Math. Anal. Appl. 359, 275–284 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Dai, G., Ruyun, M.: Solutions for a \(p(x)\)-Kirchhoff type equation with Neumann boundary data. Nonlinear Anal. 12(5), 2666–2680 (2011)

    MathSciNet  MATH  Google Scholar 

  14. DiBenedetto, E.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7, 827–850 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. El Ouaarabi, M., Allalou, C., Melliani, S.: Existence result for Neumann problems with \(p(x)\)-Laplacian-like operators in generalized Sobolev spaces. Rend. Circ. Mat. Palermo, II. Ser. https://doi.org/10.1007/s12215-022-00733-y

    Google Scholar 

  16. El Ouaarabi, M., Allalou, C., Melliani, S.: On a class of \(p(x)\)-Laplacian-like Dirichlet problem depending on three real parameters. Arab. J. Math. pp. 1–13 (2022)

  17. El Ouaarabi, M., Allalou, C., Melliani, S.: Existence of weak solution for a class of \(p(x)\)-Laplacian problems depending on three real parameters with Dirichlet condition. Boletín de la Sociedad Matemática Mexicana 28(2), 1–16 (2022)

    MathSciNet  Google Scholar 

  18. Fan, X.L., Zhao, D.: On the Spaces \(L^{p(x)}({\Omega} )\) and \(W^{m, p(x)}({\Omega} )\). J Math Anal Appl. 263, 424–446 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Fan, X.L.: On nonlocal \(p(x)\)-Laplacian Dirichlet problems. Nonlinear Anal. 72, 3314–3323 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Fleckinger, J., Harrell, E., Thélin, F.D.: Boundary behavior and estimates for solutions of equations containing the p-Laplacian. Electron. J. Differ. Equ. 38, 1–19 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Henriques, E., Urbano, J.M.: Intrinsic scaling for PDEs with an exponential nonlinearity. Indiana Univ. Math. J. 55, 1701–1722 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim, I.S., Hong, S.J.: A topological degree for operators of generalized \((S_{+})\) type. Fixed Point Theory Appl. 1, 1–16 (2015)

    MathSciNet  Google Scholar 

  23. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    MATH  Google Scholar 

  24. Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{1, p(x)}\). Czechoslovak Math. J. 41(4), 592–618 (1991)

    MathSciNet  MATH  Google Scholar 

  25. Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions. Arch. Ration. Mech. Anal. 105, 267–284 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ouaarabi, M.E., Abbassi, A., Allalou, C.: Existence result for a Dirichlet problem governed by nonlinear degenerate elliptic equation in weighted Sobolev spaces. J. Elliptic Parabol Equ. 7(1), 221–242 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ouaarabi, M.E., Allalou, C., Abbassi, A.: On the Dirichlet Problem for some Nonlinear Degenerated Elliptic Equations with Weight. \(7^{\text{th}}\) International Conference on Optimization and Applications (ICOA), 1–6 (2021)

  28. Ouaarabi, M.E., Abbassi, A., Allalou, C.: Existence result for a general nonlinear degenerate elliptic problems with measure datum in weighted Sobolev spaces. Int. J. Opt. Appl. 1(2), 1–9 (2021)

    MATH  Google Scholar 

  29. Ouaarabi, M.E., Abbassi, A., Allalou, C.: Existence and uniqueness of weak solution in weighted Sobolev spaces for a class of nonlinear degenerate elliptic problems with measure data. Int. J. Nonlinear Anal. Appl. 13(1), 2635–2653 (2021)

    MATH  Google Scholar 

  30. Ragusa, M.A.: On weak solutions of ultraparabolic equations. Nonlinear Analysis: Theory, Methods & Applications 47(1), 503–511 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ragusa, M.A., Razani, A., Safari, F.: Existence of radial solutions for a \(p(x)\)-Laplacian Dirichlet problem. Advances in Difference Equations 2021(1), 1–14 (2021)

    MathSciNet  Google Scholar 

  32. Rajagopal, K. R., Ru̇zicka, M.: Mathematical modeling of electrorheological materials. Continuum Mech. Thermodyn. 13(1), 59–78 (2001)

    Article  MATH  Google Scholar 

  33. Razani, A.: Two weak solutions for fully nonlinear Kirchhoff-type problem. Filomat 35(10), 3267–3278 (2021)

    Article  MathSciNet  Google Scholar 

  34. Ru̇zicka, M.: Electrorheological fuids: modeling and mathematical theory. Springer Science & Business Media, (2000)

  35. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zeidler, E.: Nonlinear Functional Analysis and its Applications II/B. Springer-Verlag, New York (1990)

    MATH  Google Scholar 

  37. Zhao, D., Qiang, W.J., Fan, X.L.: On generalizerd Orlicz spaces \(L^{p(x)}({\Omega} )\)-. J. Gansu Sci. 9(2), 1–7 (1996)

    Google Scholar 

  38. Zhikov, V.V.E.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR-Izvestiya. 29(1), 33–66 (1987)

    Article  MATH  Google Scholar 

  39. Zhikov, V.V.E.: Averaging of functionals of the calculus of variations and elasticity theory. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya. 50(4), 675–710 (1986)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees and the editor for their careful reading and useful comments and suggestions that substantially helped improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Ouaarabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allalou, C., El Ouaarabi, M. & Melliani, S. Existence and uniqueness results for a class of p(x)-Kirchhoff-type problems with convection term and Neumann boundary data. J Elliptic Parabol Equ 8, 617–633 (2022). https://doi.org/10.1007/s41808-022-00165-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-022-00165-w

Keywords

Mathematics Subject Classification

Navigation