×

Dissipativity analysis of neutral-type memristive neural network with two additive time-varying and leakage delays. (English) Zbl 1458.92009

Summary: In this paper, we offer an approach about the dissipativity of neutral-type memristive neural networks (MNNs) with leakage, additive time, and distributed delays. By applying a suitable Lyapunov-Krasovskii functional (LKF), some integral inequality techniques, linear matrix inequalities (LMIs) and free-weighting matrix method, some new sufficient conditions are derived to ensure the dissipativity of the aforementioned MNNs. Furthermore, the global exponential attractive and positive invariant sets are also presented. Finally, a numerical simulation is given to illustrate the effectiveness of our results.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
34K40 Neutral functional-differential equations

References:

[1] Wang, Z., Liu, Y., Liu, X.: On global asymptotic stability of neural networks with discrete and distributed delays. Phys. Lett. A 345(4-6), 299-308 (2005) · Zbl 1345.92017 · doi:10.1016/j.physleta.2005.07.025
[2] Egmont-Petersen, M., Ridder, D.D., Handels, H.: Image processing with neural networks—a review. Pattern Recognit. 35(10), 2279-2301 (2002) · Zbl 1006.68884 · doi:10.1016/S0031-3203(01)00178-9
[3] Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507-519 (1971) · doi:10.1109/TCT.1971.1083337
[4] Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80-83 (2008) · doi:10.1038/nature06932
[5] Cantley, K.D., Subramaniam, A., Stiegler, H.J., Chapman, R.A., Vogel, E.M.: Neural learning circuits utilizing nano-crystalline silicon transistors and memristors. IEEE Trans. Neural Netw. Learn. Syst. 23(4), 565-573 (2012) · doi:10.1109/TNNLS.2012.2184801
[6] Ding, S., Wang, Z., Zhang, H.: Dissipativity analysis for stochastic memristive neural networks with time-varying delays: a discrete-time case. IEEE Trans. Neural Netw. Learn. Syst. 29(3), 618-630 (2018) · doi:10.1109/TNNLS.2016.2631624
[7] Cheng, J., Park, J.H., Cao, J., Zhang, D.: Quantized \(H∞{H^{\infty }}\) filtering for switched linear parameter-varying systems with sojourn probabilities and unreliable communication channels. Inf. Sci. 466, 289-302 (2018) · Zbl 1448.93323 · doi:10.1016/j.ins.2018.07.048
[8] Zhang, D., Cheng, J., Park, J.H., Cao, J.: Robust \(H∞{H^{\infty }}\) control for nonhomogeneous Markovian jump systems subject to quantized feedback and probabilistic measurements. J. Franklin Inst. 355(15), 6992-7010 (2018) · Zbl 1398.93109 · doi:10.1016/j.jfranklin.2018.07.011
[9] Sun, J., Chen, J.: Stability analysis of static recurrent neural networks with interval time-varying delay. Appl. Math. Comput. 221(9), 111-120 (2013) · Zbl 1329.93119
[10] Sun, Y., Cui, B.T.: Dissipativity analysis of neural networks with time-varying delays. Neurocomputing 168, 741-746 (2015) · doi:10.1016/j.neucom.2015.05.050
[11] Li, C., Feng, G.: Delay-interval-dependent stability of recurrent neural networks with time-varying delay. Neurocomputing 72, 1179-1183 (2009) · doi:10.1016/j.neucom.2008.02.011
[12] Lv, X., Li, X.: Delay-dependent dissipativity of neural networks with mixed non-differentiable interval delays. Neurocomputing 267, 85-94 (2017) · doi:10.1016/j.neucom.2017.04.059
[13] Wei, H., Li, R., Chen, C., Tu, Z.: Extended dissipative analysis for memristive neural networks with two additive time-varying delay components. Neurocomputing 216, 429-438 (2016) · doi:10.1016/j.neucom.2016.07.054
[14] Zeng, X., Xiong, Z., Wang, C.: Hopf bifurcation for neutral-type neural network model with two delays. Appl. Math. Comput. 282, 17-31 (2016) · Zbl 1410.37087
[15] Xu, C., Li, P., Pang, Y.: Exponential stability of almost periodic solutions for memristor-based neural networks with distributed leakage delays. Neural Comput. 28(12), 1-31 (2016) · Zbl 1482.34199 · doi:10.1162/NECO_a_00895
[16] Zhang, Y., Gu, D.W., Xu, S.: Global exponential adaptive synchronization of complex dynamical networks with neutral-type neural network nodes and stochastic disturbances. IEEE Trans. Circuits Syst. I, Regul. Pap. 60(10), 2709-2718 (2013) · doi:10.1109/TCSI.2013.2249151
[17] Brogliato, B., Maschke, B., Lozano, R., Egeland, O.: Dissipative Systems Analysis and Control. Springer, Berlin (2007) · Zbl 1121.93002 · doi:10.1007/978-1-84628-517-2
[18] Huang, Y., Ren, S.: Passivity and passivity-based synchronization of switched coupled reaction – diffusion neural networks with state and spatial diffusion couplings. Neural Process. Lett. 5, 1-17 (2017)
[19] Fu, Q., Cai, J., Zhong, S., Yu, Y.: Dissipativity and passivity analysis for memristor-based neural networks with leakage and two additive time-varying delays. Neurocomputing 275, 747-757 (2018) · doi:10.1016/j.neucom.2017.09.014
[20] Willems, J.C.: Dissipative dynamical systems part I: general theory. Arch. Ration. Mech. Anal. 45(5), 321-351 (1972) · Zbl 0252.93002 · doi:10.1007/BF00276493
[21] Hong, D., Xiong, Z., Yang, C.: Analysis of adaptive synchronization for stochastic neutral-type memristive neural networks with mixed time-varying delays. Discrete Dyn. Nat. Soc. 2018, 8126127 (2018) · Zbl 1417.93168 · doi:10.1155/2018/8126127
[22] Cheng, J., Park, J.H., Karimi, H.R., Shen, H.: A flexible terminal approach to sampled-data exponentially synchronization of Markovian neural networks with time-varying delayed signals. IEEE Trans. Cybern. 48(8), 2232-2244 (2018) · doi:10.1109/TCYB.2017.2729581
[23] Zhang, D., Cheng, J., Cao, J., Zhang, D.: Finite-time synchronization control for semi-Markov jump neural networks with mode-dependent stochastic parametric uncertainties. Appl. Math. Comput. 344-345, 230-242 (2019) · Zbl 1428.93129
[24] Zhang, W., Yang, S., Li, C., Zhang, W., Yang, X.: Stochastic exponential synchronization of memristive neural networks with time-varying delays via quantized control. Neural Netw. 104, 93-103 (2018) · Zbl 1441.93334 · doi:10.1016/j.neunet.2018.04.010
[25] Duan, L., Huang, L.: Global dissipativity of mixed time-varying delayed neural networks with discontinuous activations. Commun. Nonlinear Sci. Numer. Simul. 19(12), 4122-4134 (2014) · Zbl 1470.92021 · doi:10.1016/j.cnsns.2014.03.024
[26] Tu, Z., Cao, J., Alsaedi, A., Alsaadi, F.: Global dissipativity of memristor-based neutral type inertial neural networks. Neural Netw. 88, 125-133 (2017) · Zbl 1461.94106 · doi:10.1016/j.neunet.2017.01.004
[27] Manivannan, R., Cao, Y.: Design of generalized dissipativity state estimator for static neural networks including state time delays and leakage delays. J. Franklin Inst. 355, 3990-4014 (2018) · Zbl 1390.93607 · doi:10.1016/j.jfranklin.2018.01.051
[28] Xiao, J., Zhong, S., Li, Y.: Relaxed dissipativity criteria for memristive neural networks with leakage and time-varying delays. Neurocomputing 171, 708-718 (2016) · doi:10.1016/j.neucom.2015.07.029
[29] Samidurai, R., Sriraman, R.: Robust dissipativity analysis for uncertain neural networks with additive time-varying delays and general activation functions. Math. Comput. Simul. 155, 201-216 (2019) · Zbl 1540.93095 · doi:10.1016/j.matcom.2018.03.010
[30] Lin, W.J., He, Y., Zhang, C., Long, F., Wu, M.: Dissipativity analysis for neural networks with two-delay components using an extended reciprocally convex matrix inequality. Inf. Sci. 450, 169-181 (2018) · Zbl 1448.93120 · doi:10.1016/j.ins.2018.03.021
[31] Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984) · Zbl 0538.34007 · doi:10.1007/978-3-642-69512-4
[32] Arscott, F.M.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic, Amsterdam (1988) · Zbl 0664.34001
[33] Filippov, A.F.: Classical solutions of differential equations with multi-valued right-hand side. SIAM J. Control Optim. 5(4), 609-621 (1967) · Zbl 0238.34010 · doi:10.1137/0305040
[34] Song, Q., Cao, J.: Global dissipativity analysis on uncertain neural networks with mixed time-varying delays. Chaos 18, 043126 (2008) · Zbl 1309.92017 · doi:10.1063/1.3041151
[35] Liao, X., Wang, J.: Global dissipativity of continuous-time recurrent neural networks with time delay. Phys. Rev. E 68(1 Pt 2), 016118 (2003)
[36] Seuret, A., Gouaisbaut, F.: Wirtinger-based integral inequality: application to time-delay systems. Automatica 49, 2860-2866 (2013) · Zbl 1364.93740 · doi:10.1016/j.automatica.2013.05.030
[37] Wang, Z., Liu, Y., Fraser, K., Liu, X.: Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays. Phys. Lett. A 354(4), 288-297 (2006) · Zbl 1181.93068 · doi:10.1016/j.physleta.2006.01.061
[38] Kwon, O.M., Lee, S.M., Park, J.H., Cha, E.J.: New approaches on stability criteria for neural networks with interval time-varying delays. Appl. Math. Comput. 218(19), 9953-9964 (2012) · Zbl 1253.34066
[39] Park, P.G., Ko, J.W., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1), 235-238 (2011) · Zbl 1209.93076 · doi:10.1016/j.automatica.2010.10.014
[40] Xin, Y., Li, Y., Cheng, Z., Huang, X.: Global exponential stability for switched memristive neural networks with time-varying delays. Neural Netw. 80, 34-42 (2016) · Zbl 1417.34183 · doi:10.1016/j.neunet.2016.04.002
[41] Guo, Z., Wang, J., Yan, Z.: Global exponential dissipativity and stabilization of memristor-based recurrent neural networks with time-varying delays. Neural Netw. 48, 158-172 (2013) · Zbl 1297.93129 · doi:10.1016/j.neunet.2013.08.002
[42] Nagamani, G., Joo, Y.H., Radhika, T.: Delay-dependent dissipativity criteria for Markovian jump neural networks with random delays and incomplete transition probabilities. Nonlinear Dyn. 91(4), 2503-2522 (2018) · Zbl 1392.93041 · doi:10.1007/s11071-017-4028-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.