×

Image processing with neural networks – a review. (English) Zbl 1006.68884

Summary: We review more than 200 applications of neural networks in image processing and discuss the present and possible future role of neural networks, especially feed-forward neural networks, Kohonen feature maps and Hopfield neural networks. The various applications are categorised into a novel two-dimensional taxonomy for image processing algorithms. One dimension specifies the type of task performed by the algorithm: preprocessing, data reduction/feature extraction, segmentation, object recognition, image understanding and optimisation. The other dimension captures the abstraction level of the input data processed by the algorithm: pixel-level, local feature-level, structure-level, object-level, object-set-level and scene characterisation. Each of the six types of tasks poses specific constraints to a neural-based approach. These specific conditions are discussed in detail. A synthesis is made of unresolved problems related to the application of pattern recognition techniques in image processing and specifically to the application of neural networks. Finally, we present an outlook into the future application of neural networks and relate them to novel developments.

MSC:

68U99 Computing methodologies and applications
68T10 Pattern recognition, speech recognition
68U10 Computing methodologies for image processing
Full Text: DOI

References:

[1] J. Cornfield, Statistical classification methods, Proceedings of the Second Conference on the Diagnostic Process, Computer Diagnosis and Diagnostic Methods, Chicago, 1972, pp. 108-130.; J. Cornfield, Statistical classification methods, Proceedings of the Second Conference on the Diagnostic Process, Computer Diagnosis and Diagnostic Methods, Chicago, 1972, pp. 108-130.
[2] Devijver, P. A.; Kittler, J., Pattern Recognition: A Statistical Approach (1982), Englewood Cliffs: Englewood Cliffs London · Zbl 0476.68057
[3] Fukunaga, K., Introduction to Statistical Pattern Recognition (1990), Academic Press: Academic Press New York · Zbl 0711.62052
[4] Rumelhart, D. E.; Hinton, G. E.; Williams, R. J., Learning internal representations by error propagation, (Rumelhart, D. E.; McClelland, J. L., Parallel Distributed Processing: Explorations in the microstructure of Cognition, Vol. I (1986), MIT Press: MIT Press Cambridge), 319-362
[5] Pal, N. R.; Pal, S. K., A review on image segmentation techniques, Pattern Recognition, 26, 9, 1277-1294 (1993)
[6] Dassen, W. R.M.; Egmont-Petersen, M.; Mulleneers, R. G.A., Artificial neural networks in cardiology; a review, (Vardas, P. E., Cardiac Arrhythmias, Pacing & Electrophysiology (1998), Kluwer Academic Publishers: Kluwer Academic Publishers London), 205-211
[7] Bishop, C. M., Neural Networks for Pattern Recognition (1995), Oxford University Press: Oxford University Press Oxford
[8] Adler, A.; Guardo, R., A neural network image reconstruction technique for electrical impedance tomography, IEEE Trans. Med. Imaging, 13, 4, 594-600 (1994)
[9] Srinivasan, V.; Han, Y. K.; Ong, S. H., Image reconstruction by a Hopfield neural network, Image Vision Comput., 11, 5, 278-282 (1993)
[10] Meyer, R. R.; Heindl, E., Reconstruction of off-axis electron holograms using a neural net, J. Microsc., 191, 1, 52-59 (1998)
[11] Wang, Y. M.; Wahl, F. M., Vector-entropy optimization-based neural-network approach to image reconstruction from projections, IEEE Trans. Neural Networks, 8, 5, 1008-1014 (1997)
[12] Ansari, N.; Zhang, Z. Z., Generalised adaptive neural filters, IEE Electron. Lett., 29, 4, 342-343 (1993)
[13] Bedini, L.; Tonazzini, A., Image restoration preserving discontinuities: the Bayesian approach and neural networks, Image Vision Comput., 10, 2, 108-118 (1992)
[14] Chua, W.; Yang, L., Cellular networks: theory, IEEE Trans. Circuits Systems, 35, 10, 1257-1272 (1988) · Zbl 0663.94022
[15] Chua, W.; Yang, L., Cellular networks: applications, IEEE Trans. Circuits Systems, 35, 10, 1273-1290 (1988)
[16] de Ridder, D.; Duin, R. P.W.; Verbeek, P. W., The applicability of neural networks to non-linear image processing, Pattern Anal. Appl., 2, 2, 111-128 (1999)
[17] Figueiredo, M. A.T.; Leitao, J. M.N., Sequential and parallel image restoration: neural network implementations, IEEE Trans. Image Process., 3, 6, 789-801 (1994)
[18] D. Greenhil, E.R. Davies, Relative effectiveness of neural networks for image noise suppression, Proceedings of the Pattern Recognition in Practice IV, Vlieland, 1994, pp. 367-378.; D. Greenhil, E.R. Davies, Relative effectiveness of neural networks for image noise suppression, Proceedings of the Pattern Recognition in Practice IV, Vlieland, 1994, pp. 367-378.
[19] Guan, L.; Anderson, J. A.; Sutton, J. P., A network of networks processing model for image regularization, IEEE Trans. Neural Networks, 8, 1, 169-174 (1997)
[20] Hanek, H.; Ansari, N., Speeding up the generalized adaptive neural filters, IEEE Trans. Image Process., 5, 5, 705-712 (1996)
[21] Lee, C. C.; Degyvez, J. P., Color image processing in a cellular neural-network environment, IEEE Trans. Neural Networks, 7, 5, 1086-1098 (1996)
[22] Matsumoto, T.; Kobayashi, H.; Togawa, Y., Spatial versus temporal stability issues in image processing neuro chips, IEEE Trans. Neural Networks, 3, 4, 540-569 (1992)
[23] Nossek, J. A.; Roska, T., Special issue on Cellular Neural Networks, IEEE Trans. Circuits Systems, 40, 3 (1993)
[24] Paik, J. K.; Katsaggelos, A. K., Image restoration using a modified Hopfield network, IEEE Trans. Image Process., 1, 1, 49-63 (1992)
[25] Phoha, V. V.; Oldham, W. J.B., Image recovery and segmentation using competitive learning in a layered network, IEEE Trans. on Neural Networks, 7, 4, 843-856 (1996)
[26] Qian, W.; Kallergi, M.; Clarke, L. P., Order statistic-neural network hybrid filters for gamma-camera-bremsstrahlung image restoration, IEEE Trans. Med. Imaging, 12, 1, 58-64 (1993)
[27] Russo, F., Hybrid neuro-fuzzy filter for impulse noise removal, Pattern Recognition, 32, 11, 1843-1855 (1999)
[28] Russo, F., Image filtering using evolutionary neural fuzzy systems, (Pal, S. K.; Ghosh, A.; Kundu, M. K., Soft computing for image processing (2000), Physica-Verlag: Physica-Verlag Heidelberg), 23-43
[29] Sun, Y. L.; Yu, S., Improvement on performance of modified Hopfield neural network for image restoration, IEEE Trans. Image Process., 4, 5, 683-692 (1995)
[30] Zamparelli, M., Genetically trained cellular neural networks, Neural Networks, 10, 6, 1143-1151 (1997)
[31] Zhang, Z. Z.; Ansari, N., Structure and properties of generalized adaptive neural filters for signal enhancement, IEEE Trans. Neural Networks, 7, 4, 857-868 (1996)
[32] Chandrasekaran, V.; Palaniswami, M.; Caelli, T. M., Range image segmentation by dynamic neural network architecture, Pattern Recognition, 29, 2, 315-329 (1996)
[33] Chey, J.; Grossberg, S.; Mingolla, E., Neural dynamics of motion grouping—from aperture ambiguity to object speed and direction [review], J. Opt. Soc. Am. A-Optics Image Sci., 14, 10, 2570-2594 (1997)
[34] Courtney, S. M.; Finkel, L. H.; Buchsbaum, G., A multistage neural network for color constancy and color induction, IEEE Trans. Neural Networks, 6, 4, 972-985 (1995)
[35] Lu, S.; Szeto, A., Hierarchical artificial neural networks for edge enhancement, Pattern Recognition, 26, 8, 1149-1163 (1993)
[36] Moh, J.; Shih, F. Y., A general purpose model for image operations based on multilayer perceptrons, Pattern Recognition, 28, 7, 1083-1090 (1995)
[37] Pham, D. T.; Bayro-Corrochano, E. J., Neural computing for noise filtering, edge detection and signature extraction, J. Systems Eng., 2, 2, 111-222 (1992)
[38] Pugmire, R. H.; Hodgson, R. M.; Chaplin, R. I., The properties and training of a neural network based universal window filter developed for image processing tasks, (Amari, S.; Kasabov, N., Brain-like computing and intelligent information systems (1998), Springer-Verlag: Springer-Verlag Singapore), 49-77
[39] Shih, F. Y.; Moh, J.; Chang, F.-C., A new ART-based neural architecture for pattern classification and image enhancement without prior knowledge, Pattern Recognition, 25, 5, 533-542 (1992)
[40] Srinivasan, V.; Bhatia, P.; Ong, S. H., Edge detection using a neural network, Pattern Recognition, 27, 12, 1653-1662 (1994)
[41] Tsai, C.-T.; Sun, Y.-N.; Chung, P.-C., Endocardial boundary detection using a neural network, Pattern Recognition, 26, 7, 1057-1068 (1993)
[42] Waxman, A. M.; Seibert, M. C.; Gove, A., Neural processing of targets in visible multispectral IR and SAR imagery, Neural Networks, 8, 7-8, 1029-1051 (1995)
[43] Amerijckx, C.; Verleysen, M.; Thissen, P., Image compression by self-organized Kohonen map, IEEE Trans. Neural Networks, 9, 3, 503-507 (1998)
[44] Brause, R. W.; Rippl, M., Noise suppressing sensor encoding and neural signal orthonormalization, IEEE Trans. Neural Networks, 9, 4, 613-628 (1998)
[45] Dony, R. D.; Haykin, S., Neural network approaches to image compression, Proc. IEEE, 83, 2, 288-303 (1995)
[46] Fang, W.-C.; Sheu, B. J.; Chen, O. T.-C., A VLSI neural processor for image data compression using self-organization networks, IEEE Trans. Neural Networks, 3, 3, 506-518 (1992)
[47] Hauske, G., A self organizing map approach to image quality, Biosystems, 40, 1-2, 93-102 (1997)
[48] Heikkonen, J., A computer vision approach to air flow analysis, Pattern Recognition Lett., 17, 4, 369-385 (1996)
[49] Morris, R. J.T.; Rubin, L. D.; Tirri, H., Neural network techniques for object orientation detection: solution by optimal feedforward network and learning vector quantization approaches, IEEE Trans. Pattern Anal. Mach. Intell., 12, 11, 1107-1115 (1990)
[50] Rizvi, S. A.; Wang, L. C.; Nasrabadi, N. M., Nonlinear vector prediction using feed-forward neural networks, IEEE Trans. Image Process., 6, 10, 1431-1436 (1997)
[51] Skarbek, W.; Cichocki, A., Robust image association by recurrent neural subnetworks, Neural Process. Lett., 3, 131-138 (1996)
[52] Daugman, J. G., Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression, IEEE Trans. Acoustics, Speech Signal Process., 36, 7, 1169-1179 (1988) · Zbl 0709.94577
[53] Dony, R. D.; Haykin, S., Optimally adaptive transform coding, IEEE Trans. Image Process., 4, 10, 1358-1370 (1995)
[54] Garris, M. D.; Wilson, C. L.; Blue, J. L., Neural network-based systems for handprint OCR applications, IEEE Trans. Image Process., 7, 8, 1097-1112 (1998)
[55] Mitra, S.; Yang, S. Y., High fidelity adaptive vector quantization at very low bit rates for progressive transmission of radiographic images, J. Electron. Imaging, 8, 1, 23-35 (1999)
[56] Tzovaras, D.; Strintzis, M. G., Use of nonlinear principal component analysis and vector quantization for image coding, IEEE Trans. Image Process., 7, 8, 1218-1223 (1998) · Zbl 0993.94517
[57] Wang, L. C.; Rizvi, S. A.; Nasrabadi, N. M., A modular neural network vector predictor for predictive image coding, IEEE Trans. Image Process., 7, 8, 1198-1217 (1998) · Zbl 0973.94507
[58] Weingessel, A.; Bischof, H.; Hornik, K., Adaptive combination of PCA and VQ networks, IEEE Trans. Neural Networks, 8, 5, 1208-1211 (1997)
[59] Waller, W. G.; Jain, A. K., On the monotonicity of the performance of a Bayesian classifier, IEEE Trans. Information Theory, 24, 3, 392-394 (1978) · Zbl 0383.62035
[60] Lampinen, J.; Oja, E., Pattern recognition, (Leondes, C. T., Neural Network Systems, Techniques and Applications, Vol. 5, Image Processing and Pattern Recognition (1998), Academic Press: Academic Press New York), 1-59
[61] Oja, E., A simplified neuron model as a principal component analyzer, J. Math. Biol., 15, 3, 267-273 (1982) · Zbl 0488.92012
[62] Oja, E., Neural networks, principal components, and subspaces, Int. J. Neural Systems, 1, 1, 61-68 (1989)
[63] Baldi, P.; Hornik, J., Neural networks and principal component analysis: learning from examples without local minima, Neural Networks, 2, 1, 53-58 (1989)
[64] Kramer, M., Nonlinear principal component analysis using autoassociative neural networks, Am. Ins. Chem. Eng. J., 37, 2, 223-243 (1991)
[65] S. Usui, S. Nakauchi, M. Nakano, Internal color representation acquired by a five-layer neural network, Proceedings of the International Conference on Artificial Neural Networks, Helsinki, Finland, 1991, pp. 867-872.; S. Usui, S. Nakauchi, M. Nakano, Internal color representation acquired by a five-layer neural network, Proceedings of the International Conference on Artificial Neural Networks, Helsinki, Finland, 1991, pp. 867-872.
[66] Hastie, T.; Stuetzle, W., Principal curves, J. Am. Statist. Assoc., 84, 406, 502-516 (1989) · Zbl 0679.62048
[67] Hinton, G. E.; Dayan, P.; Revow, M., Modelling the manifolds of images of handwritten digits, IEEE Trans. Neural Networks, 8, 1, 65-74 (1997)
[68] Abbas, H. M.; Fahmy, M. M., Neural networks for maximum likelihood clustering, Signal Processing, 36, 1, 111-126 (1994) · Zbl 0789.62047
[69] Cruz, J. M.; Pajares, G.; Aranda, J., Stereo matching technique based on the perceptron criterion function, Pattern Recognition Lett., 16, 9, 933-944 (1995)
[70] Fukumi, M.; Omatu, S.; Nishikawa, Y., Rotation-invariant neural pattern recognition system estimating a rotation angle, IEEE Trans. Neural Networks, 8, 3, 568-581 (1997)
[71] Glass, J. O.; Reddick, W. E., Hybrid artificial neural network segmentation and classification of dynamic contrast-enhanced MR imaging (DEMRI) of osteosarcoma, Magn. Resonance Imaging, 16, 9, 1075-1083 (1998)
[72] Këpuska, V. Z.; Mason, S. O., A hierarchical neural network system for signalized point recognition in aerial photographs, Photogrammetric Eng. Remote Sensing, 61, 7, 917-925 (1995)
[73] Lampinen, J.; Oja, E., Distortion tolerant pattern recognition based on self-organizing feature extraction, IEEE Trans. Neural Networks, 6, 3, 539-547 (1995)
[74] Patel, D.; Davies, E. R.; Hannah, I., The use of convolution operators for detecting contaminants in food images, Pattern Recognition, 29, 6, 1019-1029 (1996)
[75] Shustorovich, A., A subspace projection approach to feature extraction—the 2-D Gabor transform for character recognition, Neural Networks, 7, 8, 1295-1301 (1994)
[76] Suganthan, P. N.; Yan, H., Recognition of handprinted Chinese characters by constrained graph matching, Image Vision Comput., 16, 3, 191-201 (1998)
[77] Williams, C. K.I.; Revow, M.; Hinton, G. E., Instantiating deformable models with a neural net, Comput. Vision Image Understand, 68, 1, 120-126 (1997)
[78] Ahmed, M. N.; Farag, A. A., Two-stage neural network for volume segmentation of medical images, Pattern Recognition Lett., 18, 11-13, 1143-1151 (1997)
[79] Chen, C. T.; Tsao, E. C.; Lin, W. C., Medical image segmentation by a constraint satisfaction neural network, IEEE Trans. Nucl. Sci., 38, 2, 678-686 (1991)
[80] Chiou, G. I.; Hwang, J. N., A neural network based stochastic active contour model (NNS-SNAKE) for contour finding of distinct features, IEEE Trans. Image Process., 4, 10, 1407-1416 (1995)
[81] Chong, C.; Jia, J., Assessments of neural network classifier output codings using variability of Hamming distance, Pattern Recognition Lett., 17, 8, 811-818 (1996)
[82] Franzke, M.; Handels, H., Topologische Merkmalskarten zur automatischen Mustererkennung in medizinischen Bilddaten, (Fuchs, S.; Hoffmann, R., Informatik Aktuell, Mustererkennung 1992, 14. DAGM-Symposium (1992), Springer: Springer Heidelberg), 329-334
[83] Ghosh, A.; Pal, N. R.; Pal, S. K., Image segmentation using a neural network, Biol. Cybernet., 66, 2, 151-158 (1991) · Zbl 0735.68094
[84] Ghosh, A.; Pal, S. K., Neural network, self-organization and object extraction, Pattern Recognition Lett., 13, 5, 387-397 (1992)
[85] Ghosh, A.; Pal, N. R.; Pal, S. K., Object background classification using Hopfield type neural network, Int. J. Pattern Recognition Artific. Intell., 6, 5, 989-1008 (1992)
[86] Ghosh, A., Use of fuzziness measures in layered networks for object extraction: a generalization, Fuzzy Sets Systems, 72, 3, 331-348 (1995)
[87] Groß, M.; Seibert, F., Visualization of multidimensional data sets using a neural network, Visual Comput., 10, 3, 145-159 (1993)
[88] Grossberg, S.; Mingolla, E., Neural dynamics of surface perception: boundary webs, illuminants, and shape from shading, Comput. Vision, Graphics, Image Process., 37, 1, 116-165 (1987)
[89] Grossberg, S.; Mcloughlin, N. P., Cortical dynamics of three-dimensional surface perception—binocular and half-occluded scenic images, Neural Networks, 10, 9, 1583-1605 (1997)
[90] Hall, L. O.; Bensaid, A. M.; Clarke, L. P., A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain, IEEE Trans. Neural Networks, 3, 5, 672-682 (1992)
[91] Handels, H.; Busch, C.; Encarnacao, J., KAMEDIN: A telemedicine system for computer supported cooperative work and remote image analysis in radiology, Comput. Methods Programs Biomed., 52, 3, 175-183 (1997)
[92] Koh, J.; Suk, M. S.; Bhandarkar, S. M., A multilayer self organizing feature map for range image segmentation, Neural Networks, 8, 1, 67-86 (1995)
[93] Kotropoulos, C.; Magnisalis, X.; Pitas, I., Nonlinear ultrasonic image processing based on signal-adaptive filters and self-organizing neural networks, IEEE Trans. Image Process., 3, 1, 65-77 (1994)
[94] Le, D. X.; Thoma, G. R.; Wechsler, H., Classification of binary document images into textual or nontextual data blocks using neural network models, Mach. Vision Appl., 8, 5, 289-304 (1995)
[95] Lin, W.-C.; Tsao, E. C.-K.; Chen, C.-T., Constraint satisfaction neural networks for image segmentation, Pattern Recognition, 25, 7, 679-693 (1992)
[96] Manjunath, B. S.; Simchony, T.; Chellappa, R., Stochastic and deterministic networks for texture segmentation, IEEE Trans. Acoustics, Speech Signal Process., 38, 6, 1039-1049 (1990)
[97] Marshall, J. A., Self-organizing neural networks for perception of visual motion, Neural Networks, 3, 1, 45-74 (1990)
[98] Ngan, S. C.; Hu, X., Analysis of functional magnetic resonance imaging data using self-organizing mapping with spatial connectivity, Magn. Resonance Med., 41, 5, 939-946 (1999)
[99] Opara, R.; Worgotter, F., Using visual latencies to improve image segmentation, Neural Computation, 8, 7, 1493-1520 (1996)
[100] Ozkan, M.; Dawant, B. M.; Maciunas, R. J., Neural-network-based segmentation of multi-modal medical images—a comparative and prospective study, IEEE Trans. Med. Imaging, 12, 3, 534-544 (1993)
[101] Pappas, T. N., An adaptive clustering algorithm for image segmentation, IEEE Trans. Signal Process., 40, 4, 901-914 (1992)
[102] Reddick, W. E.; Glass, J. O.; Cook, E. N., Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks, IEEE Trans. Med. Imaging, 16, 6, 911-918 (1997)
[103] Rout, S.; Srivastava, S. P.; Majumdar, J., Multi-modal image segmentation using a modified Hopfield neural network, Pattern Recognition, 31, 6, 743-750 (1998)
[104] Schofield, A. J.; Mehta, P. A.; Stonham, T. J., A system for counting people in video images using neural networks to identify the background scene, Pattern Recognition, 29, 8, 1421-1428 (1996)
[105] Serpico, S. B.; Bruzzone, L.; Roli, F., An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images, Pattern Recognition Lett., 17, 13, 1331-1341 (1996)
[106] Silverman, R. H., Segmentation of ultrasonic images with neural networks, Int. J. Pattern Recognition Artific. Intell., 5, 619-628 (1991)
[107] van Hulle, M. M.; Tollenaere, T., A modular artificial neural network for texture processing, Neural Networks, 6, 1, 7-32 (1993)
[108] Vilarino, D. L.; Brea, V. M.; Cabello, D., Discrete-time CNN for image segmentation by active contours, Pattern Recognition Lett., 19, 8, 721-734 (1998) · Zbl 0909.68213
[109] Waldemark, J., An automated procedure for cluster analysis of multivariate satellite data, Int. J. Neural Systems, 8, 1, 3-15 (1997)
[110] Wang, T.; Zhuang, X.; Xing, X., Robust segmentation of noisy images using a neural network model, Image Vision Comput., 10, 4, 233-240 (1992)
[111] Wang, D. L.; Terman, D., Image segmentation based on oscillatory correlation, Neural Computation, 9, 4, 805-836 (1997)
[112] Wang, Y.; Adali, T.; Kung, S. Y., Quantification and segmentation of brain tissues from MR images—a probabilistic neural network approach, IEEE Trans. Image Process., 7, 8, 1165-1181 (1998)
[113] Worth, A. J.; Kennedy, D. N., Segmentation of magnetic resonance brain images using analogue constraint satisfaction neural networks, Image Vision Comput., 12, 6, 345-354 (1994)
[114] Babaguchi, N.; Yamada, K.; Kise, K., Connectionist model binarization, Int. J. Pattern Recognition Artific. Intell., 5, 4, 629-644 (1991)
[115] Babu, G. P.; Murty, M. N., Optimal thresholding using multi state stochastic connectionist approach, Pattern Recognition Lett., 16, 1, 11-18 (1995)
[116] Basak, J.; Chanda, B.; Majumder, D. D., On edge and line linking in graylevel images with connectionist models, IEEE Trans. Systems, Man Cybernet., 24, 3, 413-428 (1994)
[117] Bors, A. G.; Pitas, I., Optical flow estimation and moving object segmentation based on median radial basis function network, IEEE Trans. Image Process., 7, 5, 693-702 (1998)
[118] DeKruger, D.; Hunt, B. R., Image processing and neural networks for recognition of cartographic area features, Pattern Recognition, 27, 4, 461-483 (1994)
[119] Egmont-Petersen, M.; Pelikan, E., Detection of bone tumours in radiographic images using neural networks, Pattern Anal. Appl., 2, 2, 172-183 (1999)
[120] Ghosal, S.; Mehrotra, R., Range surface characterization and segmentation using neural networks, Pattern Recognition, 28, 5, 711-727 (1995)
[121] Haring, S.; Viergever, M. A.; Kok, J. N., Kohonen networks for multiscale image segmentation, Image Vision Comput., 12, 6, 339-344 (1994)
[122] Kung, S. Y.; Taur, J. S., Decision based neural networks with signal image classification applications, IEEE Trans. Neural Networks, 6, 1, 170-181 (1995)
[123] Laine, A.; Fan, J., Texture classification by wavelet packet signatures, IEEE Trans. Pattern Anal. Mach. Intell., 15, 11, 1186-1191 (1993)
[124] Machado, R. J.; Barbosa, V. C.; Neves, P. A., Learning in the combinatorial neural model, IEEE Trans. Neural Networks, 9, 5, 831-847 (1998)
[125] McNittgray, M. F.; Huang, H. K.; Sayre, J. W., Feature selection in the pattern classification problem of digital chest radiograph segmentation, IEEE Trans. Med. Imaging, 14, 3, 537-547 (1995)
[126] Raghu, P. P.; Poongodi, R.; Yegnanarayana, B., Unsupervised texture classification using vector quantization and deterministic relaxation neural network, IEEE Trans. Image Process., 6, 10, 1376-1387 (1997)
[127] Sukissian, L.; Kollias, S.; Boutalis, Y., Adaptive classification of textured images using linear prediction and neural networks, Signal Processing, 36, 2, 209-232 (1994) · Zbl 0804.68161
[128] Toulson, D. L.; Boyce, J. F., Segmentation of MR images using neural nets, Image Vision Comput., 10, 5, 324-328 (1992)
[129] Tsao, E. C.-K.; Lin, W.-C.; Chen, C.-T., Constraint satisfaction neural networks for image recognition, Pattern Recognition, 26, 4, 553-567 (1993)
[130] L.M.J. Florack, The syntactical structure of scalar images, thesis, Image Sciences Institute, Utrecht University, Utrecht, 1993.; L.M.J. Florack, The syntactical structure of scalar images, thesis, Image Sciences Institute, Utrecht University, Utrecht, 1993.
[131] Egmont-Petersen, M.; Talmon, J. L.; Brender, J., On the quality of neural net classifiers, Artific. Intell. Med., 6, 5, 359-381 (1994)
[132] Du Buf, J. M.H.; Kardan, M.; Spann, M., Texture feature performance for image segmentation, Pattern Recognition, 23, 3-4, 291-309 (1990)
[133] Zhang, Y. J., A survey on evaluation methods for image segmentation, Pattern Recognition, 29, 8, 1335-1346 (1996)
[134] Alippi, C., Real-time analysis of ships in radar images with neural networks, Pattern Recognition, 28, 12, 1899-1913 (1995)
[135] Antonucci, M.; Tirozzi, B.; Yarunin, N. D., Numerical simulation of neural networks with translation and rotation invatiant pattern recognition, Int. J. Modern Phys. B, 8, 11-12, 1529-1541 (1994)
[136] Atick, J. J.; Griffin, P. A.; Redlich, A. N., Statistical approach to shape from shading—reconstruction of 3-D face surfaces from single 2-D images, Neural Comput., 8, 6, 1321-1340 (1996)
[137] Basak, J.; Pal, S. K., PsyCOP—A psychologically motivated connectionist system for object perception, IEEE Trans. Neural Networks, 6, 6, 1337-1354 (1995)
[138] J. Buhmann, J. Lange, C.v.d. Malsburg et al., Object recognition with Gabor functions in the dynamic link architecture—parallel implementation on a transputer network, in: B. Kosko (Ed.), Neural Networks for Signal Processing, 1992, Prentice-Hall, Englewood Cliffs, NJ, pp. 121-160.; J. Buhmann, J. Lange, C.v.d. Malsburg et al., Object recognition with Gabor functions in the dynamic link architecture—parallel implementation on a transputer network, in: B. Kosko (Ed.), Neural Networks for Signal Processing, 1992, Prentice-Hall, Englewood Cliffs, NJ, pp. 121-160.
[139] Carpenter, G. A.; Grossberg, S.; Lesher, G. W., The what-and-where filter—a spatial mapping neural network for object recognition and image understanding, Comput. Vision Image Understand, 69, 1, 1-22 (1998)
[140] Carson, C. A.; Keller, J. M.; McAdoo, K. K., Escherichia coli O157:H7 restriction pattern recognition by artificial neural network, J. Clin. Microbiol., 33, 11, 2894-2898 (1995)
[141] Chan, H.-P.; Lo, S.-C. B.; Sahiner, B., Computer-aided detection of mammographic microcalcifications: pattern recognition with an artificial neural network, Med. Phys., 22, 10, 1555-1567 (1995)
[142] Chen, C. H., On the relationships between statistical pattern recognition and artificial neural networks, Int. J Pattern Recognition Artific. Intell., 5, 4, 655-661 (1991) · Zbl 0802.68108
[143] Christensen, S. S.; Andersen, A. W.; Jørgensen, T. M., Visual guidance of a pig evisceration robot using neural networks, Pattern Recognition Lett., 17, 4, 345-355 (1996)
[144] Delopoulos, A.; Tirakis, A.; Kollias, S., Invariant image classification using triple-correlation-based neural networks, IEEE Trans. Neural Networks, 5, 3, 392-408 (1994)
[145] do Valle Simões, E.; Uebel, L. F.; Barone, D. A.C., Hardware implementation of RAM neural networks, Pattern Recognition Lett., 17, 4, 421-429 (1996)
[146] Dror, I. E.; Zagaeski, M.; Moss, C. F., 3-D target recognition via sonar—a neural network model, Neural Networks, 8, 1, 149-160 (1995)
[147] Egmont-Petersen, M.; Arts, T., Recognition of radiopaque markers in X-ray images using a neural network as nonlinear filter, Pattern Recognition Lett., 20, 5, 521-533 (1999)
[148] Egmont-Petersen, M.; Schreiner, U.; Tromp, S. C., Detection of leukocytes in contact with the vessel wall from in vivo microscope recordings using a neural network, IEEE Trans. Biomed. Eng., 47, 7, 941-951 (2000)
[149] Fukumi, M.; Omatu, S.; Takeda, F., Rotation-invariant neural pattern-recognition system with application to coin recognition, IEEE Trans. Neural Networks, 3, 2, 272-279 (1992)
[150] Fukushima, K., Neocognitron: a hierarchical neural network capable of visual pattern recognition, Neural Networks, 1, 2, 119-130 (1988)
[151] Graf, H. P.; Nohl, C. R.; Ben, J., Image recognition with an analog neural net chip, Mach. Vision Appl., 8, 2, 131-140 (1995)
[152] Hurst, R. E.; Bonner, R. B.; Ashenayi, K., Neural net-based identification of cells expressing the p300 tumor-related antigen using fluorescence image analysis, Cytometry, 27, 1, 36-42 (1997)
[153] Itoh, K., ID number recognition of X-ray films by a neural network, Comput. Methods Programs Biomed., 43, 1-2, 15-18 (1994)
[154] Javidi, B.; Tang, Q., Optical implementation of neural networks by the use of nonlinear joint transform correlators, Appl. Opt., 34, 20, 3950-3962 (1995)
[155] Kasabov, N. K.; Israel, S. I.; Woodford, B. J., Adaptive, evolving, hybrid connectionist systems for image pattern recognition, (Pal, S. K.; Ghosh, A.; Kundu, M. K., Soft computing for image processing (2000), Physica-Verlag: Physica-Verlag Heidelberg)
[156] Kim, J. H.; Cho, H. S., Neural network-based inspection of solder joints using a circular illumination, Image Vision Comput., 13, 6, 479-490 (1995)
[157] Kosko, B., Adaptive bidirectional associative memories, Appl. Opt., 26, 23, 4947-4960 (1987)
[158] LeCun, Y.; Boser, B.; Denker, J. S., Backpropagation applied to handwritten zip code recognition, Neural Comput., 1, 4, 541-551 (1989)
[159] LeCun, Y.; Jackel, L. D.; Boser, B., Handwritten digit recognition—applications of neural network chips and automatic learning, IEEE Commun. Mag., 27, 11, 41-46 (1989)
[160] Lin, J. S.; Lo, S. C.B.; Hasegawa, A., Reduction of false positives in lung nodule detection using a two-level neural classification, IEEE Trans. Med. Imag., 15, 2, 206-217 (1996)
[161] McQuoid, M. R.J., Neural ensembles: simultaneous recognition of multiple 2-D visual objects, Neural Networks, 6, 7, 917-970 (1993)
[162] Neubauer, C., Evaluation of convolutional neural networks for visual recognition, IEEE Trans. Neural Networks, 9, 4, 685-696 (1998)
[163] Paquet, E.; Rioux, M.; Arsenault, H. H., Invariant pattern recognition for range images using the phase Fourier transform and a neural network, Opt. Eng., 34, 4, 1178-1183 (1994)
[164] Penedo, M. G.; Carreira, M. J.; Mosquera, A., Computer-aided diagnosis: a neural-network-based approach to lung nodule detection, IEEE Trans. Med. Imag., 17, 6, 872-880 (1998)
[165] Perlovsky, L. I.; Schoendorf, W. H.; Burdick, B. J., Model-based neural network for target detection in SAR images, IEEE Trans. Image Process., 6, 1, 203-216 (1997)
[166] Principe, J. C.; Kim, M.; Fisher, J. W., Target discrimination in synthetic aperture radar using artificial neural networks, IEEE Trans. Image Process., 7, 8, 1136-1149 (1998)
[167] Shen, J.-Y.; Zhang, Y.-X.; Mu, G.-G., Optical pattern recognition system based on a winner-take-all model of a neural network, Opt. Eng., 32, 5, 1053-1056 (1992)
[168] Sklansky, J.; Vriesenga, M., Genetic selection and neural modelling of piecewise-linear classifiers, Int. J. Pattern Recognition Artific. Intell., 10, 5, 587-612 (1996)
[169] Spirkovska, L.; Reid, M. B., Coarse-coded higher-order neural networks for PRSI object recognition, IEEE Trans. Neural Networks, 4, 2, 276-283 (1993)
[170] Spirkovska, L.; Reid, M. B., Higher-order neural networks applied to 2D and 3D object recognition, Mach. Learning, 15, 2, 169-199 (1994)
[171] Turner, M.; Austin, J.; Allinson, N. M., Chromosome location and feature extraction using neural networks, Image Vision Comput., 11, 4, 235-239 (1993)
[172] Wang, L. C.; Der, S. Z.; Nasrabadi, N. M., Automatic target recognition using a feature-decomposition and data-decomposition modular neural network, IEEE Trans. Image Process., 7, 8, 1113-1121 (1998)
[173] Wang, L.; Der, S.; Nasrabadi, N., Composite classifiers for automatic target recognition, Opt. Eng., 37, 3, 858-868 (1998)
[174] Wohler, C., A time delay neural network algorithm for estimating image-pattern shape and motion, Image Vision Comput., 17, 3-4, 281-294 (1999)
[175] Young, S. S.; Scott, P. D.; Bandera, C., Foveal automatic target recognition using a multiresolution neural network, IEEE Trans. Image Process., 7, 8, 1122-1135 (1998)
[176] Young, S. S.; Scott, P. D.; Nasrabadi, N. M., Object recognition using multilayer Hopfield neural network, IEEE Trans. Image Process., 6, 3, 357-372 (1997)
[177] Zheng, Y.; Greenleaf, J. F.; Gisvold, J. J., Reduction of breast biopsies with a modified self-organizing map, IEEE Trans. Neural Networks, 8, 6, 1386-1396 (1997)
[178] Zhu, Z. G.; Yang, S. Q.; Xu, G. Y., Fast road classification and orientation estimation using omni-view images and neural networks, IEEE Trans. Image Process., 7, 8, 1182-1197 (1998)
[179] Ziemke, T., Radar image segmentation using recurrent artificial neural networks, Pattern Recognition Lett., 17, 4, 319-334 (1996)
[180] Jähne, B., Digital image processing. Concepts, Algorithms and Scientific Applications (1995), Springer: Springer Berlin · Zbl 0840.68122
[181] Florack, L. M.J.; ter Haar Romeny, B. M.; Koenderink, J. J., Scale and the differential structure of images, Image Vision Comput., 10, 6, 376-388 (1992) · Zbl 0788.68162
[182] Bengio, Y.; Simard, P.; Frasconi, P., Learning long-term dependencies with gradient descent is difficult, IEEE Trans. Neural Networks, 5, 2, 157-166 (1994)
[183] Anand, R.; Mehrotra, K.; Mohan, C. K., Analyzing images containing multiple sparse patterns with neural networks, Pattern Recognition, 26, 11, 1717-1724 (1993)
[184] Bajaj, R.; Chaudhury, S., Signature verification using multiple neural classifiers, Pattern Recognition, 30, 1, 1-7 (1997)
[185] Brake, G. M.T.; Karssemeijer, N., Single and multiscale detection of masses in digital mammograms, IEEE Trans. Med. Imag., 18, 7, 628-639 (1999)
[186] Chang, S. H.; Han, G. H.; Valverde, J. M., Cork quality classification system using a unified image processing and fuzzy-neural network methodology, IEEE Trans. Neural Networks, 8, 4, 964-974 (1997)
[187] Deschênes, S.; Sheng, Y.; Chevrette, P. C., Three-dimensional object recognition from two-dimensional images using wavelet transforms and neural networks, Opt. Eng., 37, 3, 763-770 (1998)
[188] Einstein, A. J.; Barba, J.; Unger, P. D., Nuclear diffuseness as a measure of texture: definition and application to the computer-assisted diagnosis of parathyroid adenoma and carcinoma, J. Micros., 176, 2, 158-166 (1994)
[189] Heikkonen, J.; Mäntynen, M., A computer vision approach to digit recognition on pulp bales, Pattern Recognition Lett., 17, 4, 413-419 (1996)
[190] Huang, K.; Yan, H., Off-line signature verification based on geometric feature extraction and neural network classification, Pattern Recognition, 30, 1, 9-17 (1997)
[191] Iftekharuddin, K. M.; Schechinger, T. D.; Jemili, K., Feature-based neural wavelet optical character recognition system, Opt. Eng., 34, 11, 3193-3199 (1995)
[192] Jørgensen, T. M.; Christensen, S. S.; Andersen, A. W., Detecting danger labels with RAM-based neural networks, Pattern Recognition Lett., 17, 4, 399-412 (1996)
[193] Kai, H.; Yan, H., Off-line signature verification based on geometric feature extraction and neural network classification, Pattern Recognition, 30, 1, 9-17 (1997)
[194] Karssemeijer, N.; Brake, G. M.T., Detection of stellate distortions in mammograms, IEEE Trans. Med. Imag., 15, 5, 611-619 (1996)
[195] Khotanzad, A.; Lu, J. H., Classification of invariant image representations using a neural network, IEEE Trans. Acoustics, Speech Signal Process., 38, 6, 1028-1038 (1990)
[196] Kim, H. J.; Yang, H. S., A neural network capable of learning and inference for visual pattern recognition, Pattern Recognition, 27, 10, 1291-1302 (1994)
[197] Lawrence, S.; Giles, C. L.; Tsoi, A. C., Face recognition—a convolutional neural-network approach, IEEE Trans. Neural Networks, 8, 1, 98-113 (1997)
[198] Mitzias, D. A.; Mertzios, B. G., Shape recognition with a neural network classifier based on a fast polygon approximation technique, Pattern Recognition, 27, 5, 627-636 (1994)
[199] Pan, Y., A note on efficient parallel algorithms for the computation of 2D image moments, Pattern Recognition, 24, 9, 917 (1991)
[200] Park, Y., A comparison of neural net classifiers and linear tree classifiers: their similarities and differences, Pattern Recognition, 27, 11, 1493-1503 (1994)
[201] Raghu, P. P.; Yegnanarayana, B., Multispectral image classification using gabor filters and stochastic relaxation neural network, Neural Networks, 10, 3, 561-572 (1997)
[202] Ramanan, S.; Petersen, R. S.; Clarkson, T. G., pRAM nets for detection of small targets in sequences of infra-red images, Neural Networks, 8, 7-8, 1227-1237 (1995)
[203] Ravichandran, A.; Yegnanarayana, B., Studies on object recognition from degraded images using neural networks, Neural Networks, 8, 3, 481-488 (1995)
[204] Ros, F.; Guillaume, S.; Rabatel, G., Recognition of overlapping particles in granular product images using statistics and neural networks, Food Control, 6, 1, 37-43 (1995)
[205] Sajda, P.; Spence, C. D.; Hsu, S., Integrating neural networks with image pyramids to learn target context, Neural Networks, 8, 7-8, 1143-1152 (1995)
[206] Strouthopoulos, C.; Papamarkos, N., Text identification for document image analysis using a neural network, Image Vision Comput., 16, 12-13, 879-896 (1998)
[207] Takác, B.; Sadovnik, L., Three-dimensional target recognition and tracking using neural networks trained on optimal views, Opt. Eng., 37, 3, 819-828 (1998)
[208] Tsai, D.-M.; Tsai, R.-Y., Use neural networks to determine matching order for recognizing overlapping objects, Pattern Recognition Lett., 17, 10, 1077-1088 (1996)
[209] Wang, J. Y.; Cohen, F. S., 3-D Object recognition and shape estimation from image contours using b-splines, shape invariant matching, and neural network.2, IEEE Trans. Pattern Anal. Mach. Intell., 16, 1, 13-23 (1994)
[210] Casasent, D.; Neiberg, L. M.; Sipe, M. A., Feature space trajectory distorted object representation for classification and pose estimation, Opt. Eng., 37, 3, 914-920 (1998)
[211] Sonka, M.; Hlavac, V.; Boyle, R., Image processing, Analysis, and Machine Vision (1999), PWS Publishing: PWS Publishing Pacific Grove
[212] Sams, T.; Hansen, J. L., Implications of physical symmetries in adaptive image classifiers, Neural Networks, 13, 6, 565-570 (2000)
[213] Lerner, B., Toward a completely automatic neural-network-based human chromosome analysis, IEEE Trans. System, Man, Cybernet. Part B: Cybernetics, 28, 4, 544-552 (1998)
[214] Pasquariello, G.; Satalino, G.; Forgia, V.l., Automatic target recognition for naval traffic control using neural networks, Image Vision Comput., 16, 2, 67-73 (1998)
[215] Wells, G.; Venaille, C.; Torras, C., Promising research: vision-based robot positioning using neural networks, Image Vision Comput., 14, 10, 715-732 (1996)
[216] Foresti, G. L.; Pieroni, G., Exploiting neural trees in range image understanding, Pattern Recognition Lett., 19, 9, 869-878 (1998)
[217] Reinus, W. R.; Wilson, A. J.; Kalman, B., Diagnosis of focal bone lesions using neural networks, Invest. Radiol., 29, 6, 606-611 (1994)
[218] Stassopoulou, A.; Petrou, M.; Kittler, J., Bayesian and neural networks for geographic information processing, Pattern Recognition Lett., 17, 13, 1325-1330 (1996)
[219] M. Egmont-Petersen, W.R.M. Dassen, C.J.H.J. Kirchhof et al., An explanation facility for a neural network trained to predict arterial fibrillation directly after cardiac surgery, Proceedings of Computers in Cardiology 1998, Cleveland, 1998, pp. 489-492.; M. Egmont-Petersen, W.R.M. Dassen, C.J.H.J. Kirchhof et al., An explanation facility for a neural network trained to predict arterial fibrillation directly after cardiac surgery, Proceedings of Computers in Cardiology 1998, Cleveland, 1998, pp. 489-492.
[220] Tickle, A. B.; Andrews, R.; Golea, M., The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks, IEEE Trans. Neural Networks, 9, 6, 1057-1068 (1998)
[221] Bertin, E.; Bischof, H.; Bertolino, P., Voronoi pyramids controlled by Hopfield neural networks, Comput. Vision Image Understand., 63, 3, 462-475 (1996)
[222] Chen, T. W.; Lin, W. C., A neural network approach to CSG-based 3-D object recognition, IEEE Trans. Pattern Anal. Mach. Intell., 16, 7, 719-726 (1994)
[223] Chung, P. C.; Tsai, C. T.; Chen, E. L., Polygonal approximation using a competitive Hopfield neural network, Pattern Recognition, 27, 11, 1505-1512 (1994)
[224] Nasrabadi, N. M.; Choo, C. Y., Hopfield network for stereo correspondence, IEEE Trans. Neural Networks, 3, 1, 5-13 (1992)
[225] Ruichek, Y.; Postaire, J.-G., A neural matching algorithm for 3-D reconstruction from stereo pairs of linear images, Pattern Recognition Lett., 17, 4, 387-398 (1996)
[226] Shen, D.; Ip, H. H.S., A Hopfield neural network for adaptive image segmentation: an active surface paradigm, Pattern Recognition Lett., 18, 1, 37-48 (1997)
[227] Suganthan, P. N.; Teoh, E. K.; Mital, D. P., Pattern recognition by homomorphic graph matching using Hopfield neural networks, Image Vision Comput., 13, 1, 45-60 (1995)
[228] Suganthan, P. N.; Teoh, E. K.; Mital, D. P., Pattern recognition by graph matching using the Potts MFT neural networks, Pattern Recognition, 28, 7, 997-1009 (1995)
[229] Suganthan, P. N.; Teoh, E. K.; Mital, D. P., Optimal mapping of graph homomorphism onto self organising hopfield network, Image Vision Comput., 15, 9, 679-694 (1997)
[230] Yu, S.-S.; Tsai, W.-H., Relaxation by the Hopfield neural network, Pattern Recognition, 25, 2, 197-210 (1992)
[231] E.R. Hancock, J. Kittler, A Bayesian interpretation for the Hopfield network, Proceedings of the IEEE Conference on Neural Networks, San Francisco, CA, 1993, pp. 341-346.; E.R. Hancock, J. Kittler, A Bayesian interpretation for the Hopfield network, Proceedings of the IEEE Conference on Neural Networks, San Francisco, CA, 1993, pp. 341-346.
[232] Hiller, F. S.; Lieberman, G. J., Introduction to operations research (1995), McGraw-Hill: McGraw-Hill New York · Zbl 0155.28202
[233] H.J. Kappen, W. Wiegerinck, T. Morgan, et al., Stimulation initiative for european neural applications (SIENA), in: B. Kappen, S. Gielen (Eds.), Neural networks: Best practice in Europe, Vol. 8, World Scientific, Singapore, 1997, pp. 1-8. (http://www.mbfys.kun.nl/snn/Research/siena/index.html).; H.J. Kappen, W. Wiegerinck, T. Morgan, et al., Stimulation initiative for european neural applications (SIENA), in: B. Kappen, S. Gielen (Eds.), Neural networks: Best practice in Europe, Vol. 8, World Scientific, Singapore, 1997, pp. 1-8. (http://www.mbfys.kun.nl/snn/Research/siena/index.html).
[234] http://www.kcl.ac.uk/neuronet.; http://www.kcl.ac.uk/neuronet.
[235] http://www.brainstorm.co.uk/nctt.; http://www.brainstorm.co.uk/nctt.
[236] Valentin, D.; Abdi, H.; O’Toole, A. J., Connectionist models of face processing—a survey, Pattern Recognition, 27, 9, 1209-1230 (1994)
[237] Cenci, M.; Nagar, C.; Vecchione, A., PAPNET-assisted primary screening of conventional cervical smears, Anticancer Res., 20, 5C, 3887-3889 (2000)
[238] Brake, G. M.T.; Karssemeijer, N.; Hendriks, J. H.C. L., An automatic method to discriminate malignant masses from normal tissue in digital mammograms, Phys. Med. Biol., 45, 10, 2843-2857 (2000)
[239] Lee, S. K.; Lo, C. S.; Wang, C. M., A computer-aided design mammography screening system for detection and classification of microcalcifications, Int. J. Med. Inform., 60, 1, 29-57 (2000)
[240] Armed Forces Communications and Electronics Association, DARPA neural network study, AFCEA, Fairfax, 1988.; Armed Forces Communications and Electronics Association, DARPA neural network study, AFCEA, Fairfax, 1988.
[241] Roth, M. W., Survey of neural network technology for automatic target recognition, IEEE Trans. Neural Networks, 1, 1, 28-43 (1990)
[242] Egmont-Petersen, M.; Talmon, J. L.; Hasman, A., Assessing the importance of features for multi-layer perceptrons, Neural Networks, 11, 4, 623-635 (1998)
[243] Jain, A. K.; Zongker, D., Feature selection: Evaluation, application, and small sample performance, IEEE Trans. Pattern Anal. Mach. Intell., 19, 2, 153-158 (1997)
[244] Pudil, P.; Novovicová, J.; Kittler, J., Floating search methods in feature selection, Pattern Recognition Lett., 15, 11, 1119-1125 (1994)
[245] Tax, D. M.J.; Duin, R. P.W., Support vector domain description, Pattern Recognition Lett., 20, 11-13, 1191-1199 (1999)
[246] Egmont-Petersen, M.; Dassen, W. R.M.; Reiber, J. H.C., Sequential selection of discrete features for neural networks—a Bayesian approach to building a cascade, Pattern Recognition Lett., 20, 11-13, 1439-1448 (1999)
[247] Perlovsky, L. I., Conundrum of combinatorial complexity, IEEE Trans. Pattern Anal. Mach. Intell., 20, 6, 666-670 (1998)
[248] P. Simard, Y. LeCun, J. Denker, Efficient pattern recognition using a new transformation distance, Proc. Adv. Neural Inform. Process. Systems, 1994, pp. 50-58.; P. Simard, Y. LeCun, J. Denker, Efficient pattern recognition using a new transformation distance, Proc. Adv. Neural Inform. Process. Systems, 1994, pp. 50-58.
[249] W.J. Christmas, J. Kittler, M. Petrou, Analytical approaches to the neural net architecture design, Proceedings of Pattern Recognition in Practice IV, Vlieland, 1994, pp. 325-335.; W.J. Christmas, J. Kittler, M. Petrou, Analytical approaches to the neural net architecture design, Proceedings of Pattern Recognition in Practice IV, Vlieland, 1994, pp. 325-335.
[250] Murata, N.; Yoshizawa, S.; Amari, S., Network information criterion—determining the number of hidden units for an artificial neural network model, IEEE Trans. Neural Networks, 5, 6, 865-872 (1994)
[251] Pal, S. K.; Ghosh, A., Neuro-fuzzy computing for image processing and pattern recognition, Int. J. Systems Sci., 27, 12, 1179-1193 (1996) · Zbl 0871.68186
[252] Kohonen, T., Self-organized formation of topologically correct feature maps, Biol. Cybernet., 43, 1, 59-69 (1982) · Zbl 0466.92002
[253] Hopfield, J. J., Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. U.S.A., 81, 3088-3092 (1982) · Zbl 1369.92007
[254] Vapnik, V. N., Statistical Learning Theory (1998), Wiley: Wiley New York · Zbl 0934.62009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.