×

Bifurcations in rotating spherical shell convection under the influence of differential rotation. (English) Zbl 07871535


MSC:

76Exx Hydrodynamic stability
76Uxx Rotating fluids
76Rxx Diffusion and convection

Software:

LINLBF; CANDYS/QA
Full Text: DOI

References:

[1] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, 1961, Oxford University Press: Oxford University Press, New York · Zbl 0142.44103
[2] Roberts, P. H., On the thermal instability of rotating-fluid sphere containing heat sources, Phil. Trans. R. Soc. London A, 263, 93-117, 1968 · Zbl 0207.26903 · doi:10.1098/rsta.1968.0007
[3] Busse, F. H., Thermal instabilities in rapidly rotating systems, J. Fluid Mech., 44, 441-460, 1970 · Zbl 0224.76041 · doi:10.1017/S0022112070001921
[4] Geiger, G.; Busse, F. H., On the onset of thermal convection in slowly rotating fluid shells, Geophys. Astrophys. Fluid Dynam., 18, 147-156, 1981 · Zbl 0467.76077 · doi:10.1080/03091928108208777
[5] Bercovici, D.; Schubert, G.; Glatzmaier, G. A.; Zebib, A., Three-dimensional thermal convection in a spherical shell, J. Fluid Mech., 206, 75-104, 1989 · Zbl 0678.76087 · doi:10.1017/S0022112089002235
[6] Sun, Z.-P.; Schubert, G.; Glatzmaier, G. A., Transition to chaotic thermal convection in a rapidly rotating spherical fluid shell, Geophys. Astrophys. Fluid Dynam., 69, 95-131, 1993 · doi:10.1080/03091929308203576
[7] Ardes, M.; Busse, F. H.; Wicht, J., Thermal convection in rotating spherical shells, Phys. Earth Planet Inter., 99, 55-67, 1997 · doi:10.1016/S0031-9201(96)03200-1
[8] Kitauchi, H.; Araki, K.; Kida, S., Flow structure of thermal convection in a rotating spherical shell, Nonlinearity, 10, 885-904, 1997 · Zbl 0911.76085 · doi:10.1088/0951-7715/10/4/005
[9] Simitev, R.; Busse, F. H., Patterns of convection in rotating spherical shells, New J. Phys., 5, 97, 2003 · doi:10.1088/1367-2630/5/1/397
[10] Al-Shamali, F. M.; Heimpel, M. H.; Aurnou, J. M., Varying the spherical shell geometry in rotating thermal convection, Geophys. Astrophys. Fluid Dyn., 98, 153-169, 2004 · doi:10.1080/03091920410001659281
[11] Kimura, K.; Takehiro, S. I.; Yamada, M., Stability and bifurcation diagram of Boussinesq thermal convection in a moderately rotating spherical shell, Phys. Fluids, 23, 074101, 2011 · doi:10.1063/1.3602917
[12] Li, L.; X. Liao, Z. P.; Zhang, K., Multiplicity of nonlinear thermal convection in a spherical shell, Phys. Rev. E, 71, 016301, 2005 · doi:10.1103/PhysRevE.71.016301
[13] Borońska, K.; Tuckerman, L. S., Extreme multiplicity in cylindrical Rayleigh-Bénard convection. II. Bifurcation diagram and symmetry classification, Phys. Rev. E, 81, 036321, 2010 · doi:10.1103/PhysRevE.81.036321
[14] Feudel, F.; Bergemann, K.; Tuckerman, L. S.; Egbers, C.; Futterer, B.; Gellert, M.; Hollerbach, R., Convection patterns in a spherical fluid shell, Phys. Rev. E, 83, 046304, 2011 · doi:10.1103/PhysRevE.83.046304
[15] Feudel, F.; Seehafer, N.; Tuckerman, L. S.; Gellert, M., Multistability in rotating spherical shell convection, Phys. Rev. E, 87, 023021, 2013 · doi:10.1103/PhysRevE.87.023021
[16] Feudel, F.; Tuckerman, L. S.; Gellert, M.; Seehafer, N., Bifurcations of rotating waves in rotating spherical shell convection, Phys. Rev. E, 92, 053015, 2015 · doi:10.1103/PhysRevE.92.053015
[17] Mannic, P. M.; Mestel, A. J., Weakly nonlinear mode interactions in spherical Rayleigh-Bénard convection, J. Fluid Mech., 874, 359-390, 2019 · Zbl 1419.76590 · doi:10.1017/jfm.2019.440
[18] Travnikov, V.; Zaussinger, F.; Beltrame, P.; Egbers, C., Influence of the temperature-dependent viscosity on convective flow in the radial force field, Phys. Rev. E, 96, 023108, 2017 · doi:10.1103/PhysRevE.96.023108
[19] Grossmann, S.; Lohse, D.; Sun, C., High Reynolds number Taylor-Couette turbulence, Annu. Rev. Fluid Mech., 48, 53-80, 2016 · Zbl 1356.76106 · doi:10.1146/annurev-fluid-122414-034353
[20] Andereck, C. D. and Hayot, F., Ordered and Turbulent Patterns in Taylor-Couette Flow, NATO ASI Series B Physics Vol. 297 (Springer, New York, 1992).
[21] Gollub, J. P.; Swinney, H., Onset of turbulence in a rotating fluid, Phys. Rev. Lett., 35, 927-930, 1975 · doi:10.1103/PhysRevLett.35.927
[22] Newhouse, S. E.; Ruelle, D.; Takens, F., Occurrence of strange axiom a attractors near quasiperiodic flow on \(t^m,m\geq3\), Commun. Math. Phys., 64, 35-40, 1978 · Zbl 0396.58029 · doi:10.1007/BF01940759
[23] Marcus, P. S.; Tuckerman, L. S., Simulation of flow between concentric rotating spheres. Part 1. Steady states, J. Fluid Mech., 185, 1-30, 1987 · Zbl 0645.76117 · doi:10.1017/S0022112087003069
[24] Marcus, P. S.; Tuckerman, L. S., Simulation of flow between concentric rotating spheres. Part 2. Transitions, J. Fluid Mech., 185, 31-65, 1987 · Zbl 0645.76118 · doi:10.1017/S0022112087003070
[25] Hollerbach, R., Instabilities of the Stewartson layer. Part 1. The dependence on the sign of \(Ro\), J. Fluid Mech., 492, 289-302, 2003 · Zbl 1063.76558 · doi:10.1017/S0022112003005676
[26] Hoff, M.; Harlander, U., Stewartson-layer instability in a wide-gap spherical Couette experiment: Rossby number dependence, J. Fluid Mech., 878, 522-543, 2019 · Zbl 1430.76178 · doi:10.1017/jfm.2019.636
[27] Mannix, P.-M.; Mestel, A.-J., Bistability and hysteresis of axisymmetric thermal convection between differentially rotating spheres, J. Fluid Mech., 911, A12, 2021 · Zbl 1461.76420 · doi:10.1017/jfm.2020.1042
[28] P.-J. Holmes, G. J., Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Applied Mathematical Sciences Vol. 42 (Springer, New York, 1983). · Zbl 0515.34001
[29] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, Applied Mathematical Sciences Vol. 112 (Springer, New York, 2004). · Zbl 1082.37002
[30] Tuckerman, L. S.; Barkley, D., Global bifurcation to travelling waves in axisymmetric convection, Phys. Rev. Lett., 61, 408-411, 1988 · doi:10.1103/PhysRevLett.61.408
[31] Kevrekidis, I. G.; Rico/Martinez, R.; Ecke, R. E.; Farber, R. M.; Lapedes, A. S., Global bifurcations in Rayleigh-Bénad convection. Experiments, empirical maps and numerical bifurcation analysis, Physica D, 71, 342-362, 1994 · Zbl 0825.76228 · doi:10.1016/0167-2789(94)90152-X
[32] Mullin, T., Finite-dimensional dynamics in Taylor-Couette flow, IMA J. Appl. Maths, 46, 109-119, 1991 · Zbl 0718.76115 · doi:10.1093/imamat/46.1-2.109
[33] Lopez, J.-M.; Marquese, F.; Shen, J., Complex dynamics in a short annular container with rotating bottom and inner cylinder, J. Fluid Mech., 501, 327-354, 2004 · Zbl 1071.76064 · doi:10.1017/S0022112003007493
[34] Crawford, J. D.; Knobloch, E., Symmetry and symmetry-breaking bifurcations in fluid dynamics, Annu. Rev. Fluid Dyn., 23, 341-387, 1991 · Zbl 0717.76007 · doi:10.1146/annurev.fl.23.010191.002013
[35] Afraimovich, V. S. and Shil’nikov, L. P., “Invariant two-dimensional tori, their destruction and stochasticity,” Technical Report (Gorkii University, 1983).
[36] Ostlund, S.; Rand, D.; Sethna, J.; Siggia, E. D., Universal transition from quasiperiodicity to chaos in dissipative systems, Physica D, 8, 303-342, 1983 · Zbl 0538.58025 · doi:10.1016/0167-2789(83)90229-4
[37] Anishchenko, V. S.; Safonova, M. A., Mechanism of destruction of invariant curve in a model map of the plane, Radiotekh. Elektron., 32, 1207-1216, 1987
[38] Abshagen, J.; Lopez, J. M.; Marques, F.; Pfister, G., Symmetry breaking via global bifurcations of modulated rotating waves in hydrodynamics, Phys. Rev. Lett., 94, 074501, 2005 · doi:10.1103/PhysRevLett.94.074501
[39] Feudel, F.; Tuckerman, L. S.; Zaks, M.; Hollerbach, R., Hysteresis of dynamos in rotating spherical shell convection, Phys. Rev. Fluids, 2, 053902, 2017 · doi:10.1103/PhysRevFluids.2.053902
[40] Ecke, R. E.; Zhong, F.; Knobloch, E., Hopf bifurcation with broken reflection symmetry in rotating Rayleigh-Bénard convection, Europhys. Lett., 19, 177-182, 1992 · doi:10.1209/0295-5075/19/3/005
[41] Knobloch, E., “Bifurcations in rotating systems,” in Lectures on Solar and Planetary Dynamos, edited by M. R. E. Proctor and A. D. Gilbert (Cambridge University Press, Cambridge, 1994), pp. 331-372. · Zbl 0861.76089
[42] Christensen, U.; Aubert, J.; Cardin, P.; Dormy, E.; Gibbons, S.; Glatzmaier, G.; Grote, E.; Honkura, Y.; Jones, C.; Kono, M.; Matsushima, M.; Sakuraba, A.; Takahashi, F.; Tilgner, A.; Wicht, J.; Zhang, K., A numerical dynamo benchmark, Phys. Earth Planet. Inter., 128, 25-34, 2001 · doi:10.1016/S0031-9201(01)00275-8
[43] Matsui, H.; Heien, E.; Aubert, J.; Aurnou, J. M.; Avery, M.; Brown, B.; Buffett, B. A.; Busse, F.; Christensen, U. R.; Davies, C. J.; Featherstone, N.; Gastine, T.; Glatzmaier, G. A.; Gubbins, D.; Guermond, J.-L.; Hayashi, Y.-Y.; Hollerbach, R.; Hwang, L. J.; Jackson, A.; Jones, C. A.; Jiang, W.; Kellogg, L. H.; Kuang, W.; Landeau, M.; Marti, P.; Olson, P.; Ribeiro, A.; Sasaki, Y.; Schaeffer, N.; Simitev, R. D.; Sheyko, A.; Silva, L.; Stanley, S.; Takahashi, F.; Takehiro, S.; Wicht, J.; Willis, A. P., Performance benchmarks for a next generation numerical dynamo model, Geochem. Geophys. Geosyst., 17, 1586-1607, 2016 · doi:10.1002/2015GC006159
[44] Hollerbach, R., A spectral solution of the magneto-convection equations in spherical geometry, Int. J. Num. Meth. Fluids, 32, 773-797, 2000 · Zbl 0958.76065 · doi:10.1002/(SICI)1097-0363(20000415)32:7<773::AID-FLD988>3.0.CO;2-P
[45] Mamun, C. K.; Tuckerman, L. S., Asymmetry and Hopf bifurcation in spherical Couette flow, Phys. Fluids, 7, 80-91, 1995 · Zbl 0836.76033 · doi:10.1063/1.868730
[46] Feudel, U.; Jansen, W., CANDYS/QA—A software system for qualitative analysis of nonlinear dynamical systems, Int. J. Bifurcation Chaos, 2, 773-794, 1992 · Zbl 0872.65059 · doi:10.1142/S0218127492000434
[47] Meca, E.; Mercader, I.; Batiste, O.; Ramirez-Piscina, L., Complex dynamics in double-diffusive convection, Theoret. Comput. Fluid Dyn., 18, 231-238, 2004 · Zbl 1178.76152 · doi:10.1007/s00162-004-0129-1
[48] Busse, F. H., Convection driven zonal flows and vortices in the major planets, Chaos, 4, 123-134, 1994 · doi:10.1063/1.165999
[49] Khibnik, A. I., “LINLBF: A program for continuation and bifurcation analysis of equilibria up to codimension three,” in Continuation and Bifurcations: Numerical Techniques and Applications (Kluwer Academic Publisher, 1989), pp. 283-296. · Zbl 0705.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.