×

Simulation of flow between concentric rotating spheres. II. Transitions. (English) Zbl 0645.76118

Summary: [For part I see the review above (Zbl 0645.76117).]
We examine the transitions among the steady-state axisymmetric spherical Couette flows with zero, one, and two vortices per hemisphere. The steady flows are reflection symmetric with respect to the equator, but some of the transitions that we find break this symmetry. This is the first study to reproduce numerically the transitions to the one-vortex flow from the zero- and two-vortex flows. In our study, we use a numerical initial- value code to: (i) compute the bifurcation diagrams of the steady (stable and unstable) states, (ii) solve for the most unstable or least stable linear eigenmode and eigenvalue of a steady state, (iii) calculate the velocity field as a function of time during both the linear and nonlinear stages of the transitions, and (iv) determine the energy transfer mechanism into and out of the antireflecion symmetric components of the flow during the transitions. Our study provides the explanation of the laboratory observation that some transitions occur only when the inner sphere of the Couette-flow apparatus is accelerated or decelerated quickly, whereas other transitions occur only when the acceleration is slow.

MSC:

76U05 General theory of rotating fluids
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76M99 Basic methods in fluid mechanics

Citations:

Zbl 0645.76117
Full Text: DOI

References:

[1] DOI: 10.1007/BF01176606 · doi:10.1007/BF01176606
[2] DOI: 10.1016/0021-8928(61)90008-9 · Zbl 0117.42804 · doi:10.1016/0021-8928(61)90008-9
[3] Bonnet, J. Méc. 15 pp 373– (1976)
[4] Blennerhassett, Proc. R. Soc. Lond. 365 pp 191– (1979)
[5] DOI: 10.1017/S0022112082001876 · doi:10.1017/S0022112082001876
[6] Benjamin, Proc. R. Soc. Lond. 359 pp 27– (1978)
[7] Benjamin, Proc. R. Soc. Lond. 359 pp 1– (1978)
[8] Benjamin, Math. Proc. Camb. Phil. Soc. 79 pp 373– (1976)
[9] DOI: 10.1017/S0022112082001244 · Zbl 0506.76036 · doi:10.1017/S0022112082001244
[10] Yavoskaya, Sov. Phys. Dokl. 22 pp 717– (1977)
[11] DOI: 10.1007/BF01032401 · doi:10.1007/BF01032401
[12] DOI: 10.1017/S0022112075001644 · Zbl 0309.76032 · doi:10.1017/S0022112075001644
[13] DOI: 10.1017/S0022112071002076 · Zbl 0227.76030 · doi:10.1017/S0022112071002076
[14] DOI: 10.1017/S0022112082001864 · doi:10.1017/S0022112082001864
[15] Marcus, J. Fluid Mech. 185 pp 1– (1987)
[16] DOI: 10.1017/S0022112084001774 · Zbl 0561.76038 · doi:10.1017/S0022112084001774
[17] DOI: 10.1063/1.1692775 · Zbl 0213.54402 · doi:10.1063/1.1692775
[18] DOI: 10.1007/BF01022871 · doi:10.1007/BF01022871
[19] DOI: 10.1016/0045-7930(84)90016-1 · Zbl 0552.76035 · doi:10.1016/0045-7930(84)90016-1
[20] DOI: 10.1017/S0022112076002462 · doi:10.1017/S0022112076002462
[21] DOI: 10.1017/S0022112078001330 · Zbl 0379.76045 · doi:10.1017/S0022112078001330
[22] DOI: 10.1143/JPSJ.46.1935 · doi:10.1143/JPSJ.46.1935
[23] Soward, Q. J. Mech. Appl. Maths 36 pp 19– (1983)
[24] DOI: 10.1007/BF00284160 · doi:10.1007/BF00284160
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.