×

Optimal portfolio selections via \(\ell_{1, 2}\)-norm regularization. (English) Zbl 1482.90136

Summary: There has been much research about regularizing optimal portfolio selections through \(\ell_1\) norm and/or \(\ell_2\)-norm squared. The common consensuses are (i) \(\ell_1\) leads to sparse portfolios and there exists a theoretical bound that limits extreme shorting of assets; (ii) \(\ell_2\) (norm-squared) stabilizes the computation by improving the condition number of the problem resulting in strong out-of-sample performance; and (iii) there exist efficient numerical algorithms for those regularized portfolios with closed-form solutions each step. When combined such as in the well-known elastic net regularization, theoretical bounds are difficult to derive so as to limit extreme shorting of assets. In this paper, we propose a minimum variance portfolio with the regularization of \(\ell_1\) and \(\ell_2\) norm combined (namely \(\ell_{1, 2}\)-norm). The new regularization enjoys the best of the two regularizations of \(\ell_1\) norm and \(\ell_2\)-norm squared. In particular, we derive a theoretical bound that limits short-sells and develop a closed-form formula for the proximal term of the \(\ell_{1,2}\) norm. A fast proximal augmented Lagrange method is applied to solve the \(\ell_{1,2}\)-norm regularized problem. Extensive numerical experiments confirm that the new model often results in high Sharpe ratio, low turnover and small amount of short sells when compared with several existing models on six datasets.

MSC:

90C20 Quadratic programming
90C25 Convex programming
90C90 Applications of mathematical programming

Software:

CVX
Full Text: DOI

References:

[1] Beck, A., First-Order Methods in Optimization (2017), Philadelphia: SIAM and Mathematical Optimization Society, Philadelphia · Zbl 1384.65033 · doi:10.1137/1.9781611974997
[2] Behr, P.; Guettler, A.; Miebs, F., On portfolio optimization: imposing the right constraints, J. Bank. Finance, 37, 1232-1242 (2013) · doi:10.1016/j.jbankfin.2012.11.020
[3] Ben, G-Y; Noureddine, EK; LIM, A. EB, Machine learning and portfolio optimization, Manag. Sci., 64, 3, 1136-1154 (2018) · doi:10.1287/mnsc.2016.2644
[4] Brodie, J.; Daubechies, I.; De Mol, C.; Giannone, D.; Loris, I., Sparse and stable Markowitz portfolios, Proc. Natl. Acad. Sci. USA, 106, 12267-12272 (2009) · Zbl 1203.91271 · doi:10.1073/pnas.0904287106
[5] Candés, EJ; Tao, T., Decoding by linear programming, IEEE Trans. Inf. Theory, 51, 4203-4215 (2005) · Zbl 1264.94121 · doi:10.1109/TIT.2005.858979
[6] Chou, RK; Chung, H., Decimalization, trading costs, and information transmission between ETFs and index futures, J. Futures Mark. Futures Options Other Deriv. Prod., 26, 2, 131-151 (2006)
[7] Dai, Z.; Wen, F., Some improved sparse and stable portfolio optimization problems, Financ. Res. Lett., 27, 46-52 (2018) · doi:10.1016/j.frl.2018.02.026
[8] DeMiguel, V.; Garlappi, L.; Nogales, FJ; Uppal, R., A generalized approach to portoflio optimization: improving performance by constraining portfolio norms, Manag. Sci., 55, 798-812 (2009) · Zbl 1232.91617 · doi:10.1287/mnsc.1080.0986
[9] DeMiguel, V.; Garlappi, L.; Uppal, R., Optimal versus naive diversification: How inefficient is the \(1/N\) portfolio strategy?, Rev. Financ. Stud., 22, 1915-1953 (2009) · doi:10.1093/rfs/hhm075
[10] Fan, J.; Zhang, J.; Yu, K., Vast portfolio selection with gross exposure constraints, J. Am. Stat. Assoc., 107, 592-606 (2012) · Zbl 1261.62091 · doi:10.1080/01621459.2012.682825
[11] Fastrich, B.; Paterlini, S.; Winker, P., Constructing optimal sparse portfolios using regularization methods, Comput. Manag. Sci., 12, 417-434 (2015) · Zbl 1355.91077 · doi:10.1007/s10287-014-0227-5
[12] Fazel, M.; Pong, TK; Sun, D.; Tseng, P., Hankel matrix rank mininization with applications to system identification and realization, SIAM J. Matrix Anal. Appl., 34, 946-977 (2013) · Zbl 1302.90127 · doi:10.1137/110853996
[13] Giuzio, M.; Paterlini, S., Un-diversifying during crises: Is it a good idea?, CMS, 16, 401-432 (2019) · Zbl 07097399 · doi:10.1007/s10287-018-0340-y
[14] Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21. http://cvxr.com/cvx (2010)
[15] Green, RC; Hollifield, B., When will mean-variance efficient portfolios be well diversified?, J. Financ., 47, 5, 1785-1809 (1992) · doi:10.1111/j.1540-6261.1992.tb04683.x
[16] Ho, M.; Sun, Z.; Xin, J., Weighted elastic net penalized mean-variance portfolio design and computation, SIAM J. Financ. Math., 6, 1220-1244 (2015) · Zbl 1330.91173 · doi:10.1137/15M1007872
[17] Jagannathan, R.; Ma, T., Risk reduction in large portfolios: why imposing the wrong constraints helps, J. Financ., 58, 57-72 (2003) · doi:10.1111/1540-6261.00580
[18] Kremer, PJ; Lee, S.; Bogdan, M.; Paterlini, S., Sparse portfolio selection via the sorted \(\ell_1\)-Norm, J. Bank. Finance, 110, 105687 (2020) · doi:10.1016/j.jbankfin.2019.105687
[19] Lai, ZR; Yang, PY; Fang, L.; Wu, X., Short-term sparse portfolio optimization based on alternating direction method of multipliers, J. Mach. Learn. Res., 19, 1, 2547-2574 (2018) · Zbl 1420.91422
[20] Lhabitant, F-S, Portfolio Diversification (2017), Amsterdam: ISTE Press Ltd and Elsevier Ltd., Amsterdam
[21] Li, J., Sparse and stable portfolio selection with parameter uncertainty, J. Bus. Econ. Stat., 33, 381-392 (2015) · doi:10.1080/07350015.2014.954708
[22] Maillet, B.; Tokpavi, S.; Vaucher, B., Global minimum variance portfolio optimisation under some model risk: a robust regression-based approach, Eur. J. Oper. Res., 244, 1, 289-299 (2015) · Zbl 1346.91215 · doi:10.1016/j.ejor.2015.01.010
[23] Markowitz, H., Portfolio selection, J. Financ., 7, 77-91 (1952)
[24] Merton, R., On estimating the expected return on the market: an exploratory investigation, J. Financ. Econ., 8, 323-361 (1980) · doi:10.1016/0304-405X(80)90007-0
[25] Olivier, L.; Wolf, M., Analytical nonlinear shrinkage of large-dimensional covariance matrices, Ann. Stat., 48, 5, 3043-3065 (2020) · Zbl 1456.62105
[26] Olivier, L.; Wolf, M., A well-conditioned estimator for large-dimensional covariance matrices, J. Multivar. Anal., 88, 2, 365-411 (2004) · Zbl 1032.62050 · doi:10.1016/S0047-259X(03)00096-4
[27] Olivier, L.; Wolf, M., Improved estimation of the covariance matrix of stock returns with an application to portfolio selection, J. Empir. Financ., 10, 5, 603-621 (2003) · doi:10.1016/S0927-5398(03)00007-0
[28] Perrin, S., Roncalli, T.: Machine learning optimization: algorithms and portfolio allocation. In: Machine Learning for Asset Management: New Developments and Financial Applications, pp. 261-328 (2020)
[29] Shen, W.; Wang, J.; Ma, S., Doubly regularized portfolio with risk minimization, AAA, I, 1286-1292 (2014)
[30] Takeda, A.; Niranjan, M.; Gotoh, JY; Kawahara, Y., Simultaneous pursuit of out-of-sample performance and sparsity in index tracking portfolios, CMS, 10, 21-49 (2013) · Zbl 1296.91257 · doi:10.1007/s10287-012-0158-y
[31] Teng, Y.; Yang, L.; Yu, B.; Song, X., A penalty PALM method for sparse portfolio selection problems, Optim. Methods Softw., 32, 1, 126-147 (2017) · Zbl 1366.91162 · doi:10.1080/10556788.2016.1204299
[32] Tibshirani, R., Regression shrinkage and selection via the Lasso, J. R. Stat. Soc. Ser. B (Stat. Methodol.), 58, 267-288 (1996) · Zbl 0850.62538
[33] Yen, Y.-M.: Sparse weighted-norm minimum variance portfolios. Rev. Finance, pp. 1-29 (2015)
[34] Yen, Y-M; Yen, TJ, Solving norm constrained portfolio optimization via coordinate-wise descent algorithms, Comput. Stat. Data Anal., 76, 737-759 (2014) · Zbl 1506.62201 · doi:10.1016/j.csda.2013.07.010
[35] Zhang, H.; Jiang, J.; Luo, Z-Q, On the linear convergence of a proximal gradient method for a class of nonsmooth convex minimization problems, J. Oper. Res. Soc. China, 1, 163-186 (2013) · Zbl 1334.90127 · doi:10.1007/s40305-013-0015-x
[36] Zou, H.; Hastie, T., Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B (Stat. Methodol.), 67, 301-320 (2005) · Zbl 1069.62054 · doi:10.1111/j.1467-9868.2005.00503.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.