×

Adjoint-based airfoil optimization with adaptive isogeometric discontinuous Galerkin method. (English) Zbl 1440.74278

Summary: In this work, an adjoint-based airfoil shape optimization algorithm is developed based on the adaptive isogeometric discontinuous Galerkin method for compressible Euler equations to investigate the significance of each design variable of airfoil B-spline parameterization. We first parameterize the airfoil by B-spline curve approximation with some control points viewed as design variables, and build the B-spline representation of the flow field with the curve to apply the goal-oriented \(h\)-adaptive isogeometric DG method for flow solution. Then we compute and employ the discrete adjoint solutions for both multi-target error estimation in adaptive mesh refinement. With the isogeometric nature, not only all the geometrical cells but also the numerical basis functions can be analytically expressed by the design variables, indicating that the numerical solutions and objective could be differentiable with respect to those variables. Consequently, the gradient is totally computed in an accurate approach, and the sensitivity analysis is thus improved, by reducing the spatial discretization error and introducing the analytical expression of derivative, to reveal the key parameters for optimization in an intuitive and efficient manner. Although the SQP optimization algorithm is adopted in the paper, the given accurate gradient can be applied to any gradient-based optimization algorithm. The proposed algorithm is demonstrated on RAE2822 airfoil with inviscid transonic flow, where the shape is optimized to minimize the drag coefficient at a constrained lift and airfoil area. The numerical results show that the drag is much more sensitive to the design variables near the tailing edge at the beginning but sensitivity is reduced when optimal.

MSC:

74P10 Optimization of other properties in solid mechanics
65D07 Numerical computation using splines
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

HE-E1GODF; ISOGAT
Full Text: DOI

References:

[1] Mohammadi, B., Optimization of aerodynamic and acoustic performances of supersonic civil transports, Internat. J. Numer. Methods Heat Fluid Flow, 14, 7, 893-909 (2004) · Zbl 1075.76054
[2] S. Nadarajah, A. Jameson, J. Alonso, Sonic boom reduction using an adjoint method for wing-body configurations in supersonic flow, in: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2002, p. 5547.; S. Nadarajah, A. Jameson, J. Alonso, Sonic boom reduction using an adjoint method for wing-body configurations in supersonic flow, in: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2002, p. 5547.
[3] B. Kulfan, J. Bussoletti, “Fundamental” parameteric geometry representations for aircraft component shapes, in: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2006, p. 6948.; B. Kulfan, J. Bussoletti, “Fundamental” parameteric geometry representations for aircraft component shapes, in: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2006, p. 6948.
[4] Hicks, R. M.; Henne, P. A., Wing design by numerical optimization, J. Aircr., 15, 7, 407-412 (1978)
[5] Samareh, J. A., Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization, AIAA J., 39, 5, 877-884 (2001)
[6] W. Song, A. Keane, A study of shape parameterisation methods for airfoil optimisation, in: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004, p. 4482.; W. Song, A. Keane, A study of shape parameterisation methods for airfoil optimisation, in: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004, p. 4482.
[7] Grajewski, M.; Köster, M.; Turek, S., Mathematical and numerical analysis of a robust and efficient grid deformation method in the finite element context, SIAM J. Sci. Comput., 31, 2, 1539-1557 (2009) · Zbl 1211.65160
[8] Delfour, M. C.; Zolâsio, J. P., Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, Vol. 22 (2011), SIAM · Zbl 1251.49001
[9] J. Samareh, Aerodynamic shape optimization based on free-form deformation, in: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004, p. 4630.; J. Samareh, Aerodynamic shape optimization based on free-form deformation, in: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004, p. 4630.
[10] Li, D.; Hartmann, R., Adjoint-based airfoil optimization with discretization error control, Internat. J. Numer. Methods Fluids, 77, 1, 1-17 (2015)
[11] Batina, J. T., Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraft aerodynamic analysis, AIAA J., 29, 3, 327-333 (1991)
[12] Venkatakrishnan, V.; Mavriplis, D., Implicit method for the computation of unsteady flows on unstructured grids, J. Comput. Phys., 127, 2, 380-397 (1996) · Zbl 0862.76054
[13] Baker, T. J., Mesh adaptation strategies for problems in fluid dynamics, Finite Elem. Anal. Des., 25, 3-4, 243-273 (1997) · Zbl 0914.76047
[14] Becker, R.; Rannacher, R., Weighted a Posteriori Error Control in FE Methods (1996), IWR · Zbl 0968.65083
[15] Habashi, W. G.; Dompierre, J.; Bourgault, Y.; Ait-Ali-Yahia, D.; Fortin, M.; Vallet, M. G., Anisotropic mesh adaptation: Towards user-independent, mesh-independent and solver-independent CFD. Part I: General principles, Internat. J. Numer. Methods Fluids, 32, 6, 725-744 (2000) · Zbl 0981.76052
[16] Peraire, J.; Vahdati, M.; Morgan, K.; Zienkiewicz, O. C., Adaptive remeshing for compressible flow computations, J. Comput. Phys., 72, 2, 449-466 (1987) · Zbl 0631.76085
[17] Venditti, D. A.; Darmofal, D. L., Adjoint error estimation and grid adaptation for functional outputs: Application to quasi-one-dimensional flow, J. Comput. Phys., 164, 1, 204-227 (2000) · Zbl 0995.76057
[18] Hartmann, R.; Held, J.; Leicht, T.; Prill, F., Error estimation and adaptive mesh refinement for aerodynamic flows, (ADIGMA-A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications (2010), Springer), 339-353
[19] Cockburn, B.; Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comp., 52, 186, 411-435 (1989) · Zbl 0662.65083
[20] Cockburn, B.; Lin, S. Y.; Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems, J. Comput. Phys., 84, 1, 90-113 (1989) · Zbl 0677.65093
[21] Cockburn, B.; Hou, S.; Shu, C. W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math. Comp., 54, 190, 545-581 (1990) · Zbl 0695.65066
[22] Xue, D.; Demkowicz, L., Control of geometry induced error in hp finite element (FE) simulations. I. Evaluation of FE error for curvilinear geometries, Int. J. Numer. Anal. Model, 2, 3, 283-300 (2005) · Zbl 1073.65122
[23] Krivodonova, L.; Berger, M., High-order accurate implementation of solid wall boundary conditions in curved geometries, J. Comput. Phys., 211, 2, 492-512 (2006) · Zbl 1138.76403
[24] Wang, Z. J.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H. T., High-order CFD methods: current status and perspective, Internat. J. Numer. Methods Fluids, 72, 8, 811-845 (2013) · Zbl 1455.76007
[25] Moxey, D.; Green, M.; Sherwin, S.; Peiró, J., An isoparametric approach to high-order curvilinear boundary-layer meshing, Comput. Methods Appl. Mech. Engrg., 283, 636-650 (2015) · Zbl 1423.74908
[26] Fortunato, M.; Persson, P. O., High-order unstructured curved mesh generation using the Winslow equations, J. Comput. Phys., 307, 1-14 (2016) · Zbl 1352.65607
[27] Nocedal, J.; Wright, S., Numerical Optimization (2006), Springer-Verlag New York · Zbl 1104.65059
[28] Jameson, A., Aerodynamic design via control theory, J. Sci. Comput., 3, 3, 233-260 (1988) · Zbl 0676.76055
[29] Griewank, A.; Walther, A., Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Vol. 105 (2008), SIAM · Zbl 1159.65026
[30] Sóbester, A.; Forrester, A. I., Aircraft Aerodynamic Design: Geometry and Optimization (2014), John Wiley & Sons
[31] Hughes, T. J.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[32] Cottrell, J. A.; Hughes, T. J.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[33] Dörfel, M. R.; Jüttler, B.; Simeon, B., Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 264-275 (2010) · Zbl 1227.74125
[34] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 41-43, 5257-5296 (2006) · Zbl 1119.74024
[35] Buffa, A.; Sangalli, G.; Vázquez, R., Isogeometric analysis in electromagnetics: B-splines approximation, Comput. Methods Appl. Mech. Engrg., 199, 17-20, 1143-1152 (2010) · Zbl 1227.78026
[36] Akkerman, I.; Bazilevs, Y.; Calo, V.; Hughes, T.; Hulshoff, S., The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. Mech., 41, 3, 371-378 (2008) · Zbl 1162.76355
[37] Bazilevs, Y.; Calo, V. M.; Zhang, Y.; Hughes, T. J., Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Comput. Mech., 38, 4-5, 310-322 (2006) · Zbl 1161.74020
[38] Gómez, H.; Calo, V. M.; Bazilevs, Y.; Hughes, T. J., Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 49-50, 4333-4352 (2008) · Zbl 1194.74524
[39] Nielsen, P. N., Isogeometric Analysis and Shape Optimization in Fluid Mechanics (2012), Technical University of Denmark (DTU), (Ph.D. thesis)
[40] Li, K.; Qian, X., Isogeometric analysis and shape optimization via boundary integral, Comput.-Aided Des., 43, 11, 1427-1437 (2011)
[41] Cho, S.; Ha, S. H., Isogeometric shape design optimization: exact geometry and enhanced sensitivity, Struct. Multidiscip. Optim., 38, 1, 53 (2009) · Zbl 1274.74221
[42] Wall, W. A.; Frenzel, M. A.; Cyron, C., Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Engrg., 197, 33-40, 2976-2988 (2008) · Zbl 1194.74263
[43] Nagy, A. P.; Abdalla, M. M.; Gürdal, Z., Isogeometric sizing and shape optimisation of beam structures, Comput. Methods Appl. Mech. Engrg., 199, 17-20, 1216-1230 (2010) · Zbl 1227.74047
[44] Qian, X., Full analytical sensitivities in NURBS based isogeometric shape optimization, Comput. Methods Appl. Mech. Engrg., 199, 29-32, 2059-2071 (2010) · Zbl 1231.74352
[45] Duvigneau, R., Isogeometric analysis for compressible flows using a discontinuous Galerkin method, Comput. Methods Appl. Mech. Engrg., 333, 443-461 (2018) · Zbl 1440.65199
[46] Blazek, J., Computational Fluid Dynamics: Principles and Applications (2015), Butterworth-Heinemann · Zbl 1308.76001
[47] Cockburn, B.; Karniadakis, G. E.; Shu, C. W., The development of discontinuous Galerkin methods, (Discontinuous Galerkin Methods (2000), Springer), 3-50 · Zbl 0989.76045
[48] Kuru, G.; Verhoosel, C. V.; Van der Zee, K. G.; van Brummelen, E. H., Goal-adaptive isogeometric analysis with hierarchical splines, Comput. Methods Appl. Mech. Engrg., 270, 270-292 (2014) · Zbl 1296.65162
[49] Vuong, A. V.; Giannelli, C.; Jüttler, B.; Simeon, B., A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 49-52, 3554-3567 (2011) · Zbl 1239.65013
[50] Hennig, P.; Kästner, M.; Morgenstern, P.; Peterseim, D., Adaptive mesh refinement strategies in isogeometric analysis — A computational comparison, Comput. Methods Appl. Mech. Engrg., 316, 424-448 (2017) · Zbl 1439.65169
[51] Zhang, F.; Xu, Y.; Chen, F., Discontinuous Galerkin methods for isogeometric analysis for elliptic equations on surfaces, Commun. Math. Stat., 2, 3-4, 431-461 (2014) · Zbl 1310.65149
[52] Chan, J.; Evans, J. A., Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: Explicit time-stepping and efficient mass matrix inversion, Comput. Methods Appl. Mech. Engrg., 333, 2254 (2017)
[53] Yu, S.; Feng, R.; Liu, T., An isogeometric discontinuous Galerkin method for Euler equations, Math. Methods Appl. Sci., 40, 8, 3129-3139 (2017) · Zbl 1369.76029
[54] Yu, S.; Feng, R.; Yue, H.; Wang, Z.; Liu, T., Adjoint-based adaptive isogeometric discontinuous galerkin method for euler equations, Adv. Appl. Math. Mech., 10, 3, 652-672 (2018) · Zbl 1488.65670
[55] Reed, W. H.; Hill, T., Triangular Mesh Methods for the Neutron Transport Equation, Tech. Rep., ((1973), Los Alamos Scientific Lab.: Los Alamos Scientific Lab. N. Mex., USA)
[56] Luo, H.; Baum, J. D.; Löhner, R., A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids, J. Comput. Phys., 227, 20, 8875-8893 (2008) · Zbl 1391.76350
[57] Wang, Z. J.; Liu, Y., Spectral (finite) volume method for conservation laws on unstructured grids III: One dimensional systems and partition optimization, J. Sci. Comput., 20, 1, 137-157 (2004) · Zbl 1097.65100
[58] Zhang, L.; Wei, L.; Lixin, H.; Xiaogang, D.; Hanxin, Z., A class of hybrid DG/FV methods for conservation laws I: Basic formulation and one-dimensional systems, J. Comput. Phys., 231, 4, 1081-1103 (2012) · Zbl 1242.65205
[59] Cheng, J.; Wang, K.; Liu, T., A general high-order multi-domain hybrid DG/WENO-FD method for hyperbolic conservation laws, J. Comput. Math., 34, 1, 30-48 (2016) · Zbl 1363.65160
[60] H.T. Huynh, A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, in: 18th AIAA Computational Fluid Dynamics Conference, 2007, p. 4079.; H.T. Huynh, A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, in: 18th AIAA Computational Fluid Dynamics Conference, 2007, p. 4079.
[61] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 2, 439-471 (1988) · Zbl 0653.65072
[62] Hartmann, R., Adaptive Finite Element Methods for the Compressible Euler Equations (2002), Universitt Heidelberg, (Ph.D. thesis) · Zbl 1010.76002
[63] Yu, S.; Feng, R., An improved orthogonal distance fitting algorithm for B-spline curves and surfaces, J. Zhejiang Univ. (2015) · Zbl 1340.65022
[64] Golub, G. H.; Pereyra, V., The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate, SIAM J. Numer. Anal., 10, 2, 413-432 (1973) · Zbl 0258.65045
[65] Zheng, W.; Bo, P.; Liu, Y.; Wang, W., Fast B-spline curve fitting by L-BFGS, Comput. Aided Geom. Design, 29, 7, 448-462 (2012) · Zbl 1250.65022
[66] Lépine, J.; Guibault, F.; Trépanier, J. Y.; Pépin, F., Optimized nonuniform rational B-spline geometrical representation for aerodynamic design of wings, AIAA J., 39, 11, 2033-2041 (2001)
[67] Piegl, L.; Tiller, W., The NURBS Book (2012), Springer Science & Business Media
[68] Thomas, D. C.; Scott, M. A.; Evans, J. A.; Tew, K.; Evans, E. J., Bézier projection: a unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis, Comput. Methods Appl. Mech. Engrg., 284, 55-105 (2015) · Zbl 1425.65035
[69] Persson, P. O.; Peraire, J., Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-Stokes equations, SIAM J. Sci. Comput., 30, 6, 2709-2733 (2008) · Zbl 1362.76052
[70] Hartmann, R., Higher-order and adaptive discontinuous Galerkin methods with shock-capturing applied to transonic turbulent delta wing flow, Internat. J. Numer. Methods Fluids, 72, 8, 883-894 (2013) · Zbl 1455.76083
[71] Hartmann, R., Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 51, 9-10, 1131-1156 (2006) · Zbl 1106.76041
[72] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A., Parameterization of computational domain in isogeometric analysis: methods and comparison, Comput. Methods Appl. Mech. Engrg., 200, 23-24, 2021-2031 (2011) · Zbl 1228.65232
[73] Xu, G.; Mourrain, B.; Wu, X.; Chen, L.; Hui, K. C., Efficient construction of multi-block volumetric spline parameterization by discrete mask method, J. Comput. Appl. Math., 290, C, 589-597 (2015) · Zbl 1321.65028
[74] Xu, G.; Kwok, T. H.; Wang, C. C.L., Isogeometric computation reuse method for complex objects with topology-consistent volumetric parameterization, Comput.-Aided Des., 91, 1-13 (2016)
[75] Xu, G.; Li, M.; Mourrain, B.; Rabczuk, T.; Xu, J.; Bordas, S. P.A., Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization, Comput. Methods Appl. Mech. Engrg., 328 (2017) · Zbl 1439.65200
[76] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (2013), Springer Science & Business Media
[77] Steeb, W. H.; Shi, T. K., Matrix Calculus and Kronecker Product with Applications and C++ Programs (1997), World Scientific · Zbl 0952.15019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.