×

Anisotropic mesh adaption: Towards user-independent, mesh-independent and solver-independent CFD. I: General principles. (English) Zbl 0981.76052

From the summary: The present paper is the lead article in a three-part series on anisotropic mesh adaptation and its applications to structured and unstructured meshes. A flexible approach is proposed and tested on two-dimensional, inviscid and viscous, finite volume and finite element flow solvers, over a wide range of speeds. The directional properties of an interpolation-based error estimate, extracted from the Hessian of the solution, are used to control the size and orientation of mesh edges. The approach is encapsulated into an edge-based anisotropic mesh optimization methodology (MOM), which uses a judicious sequence of four local operations: refinement, coarsening, edge swapping and point movement, to equi-distribute the error estimate along all edges, without any recourse to remeshing. The mesh adaptation convergence of the MOM loop is carefully studied for a wide variety of test cases.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Oden, Int. J. Numer. Methods Fluids 7 pp 1211– (1987) · doi:10.1002/fld.1650071105
[2] Kallinderis, Int. J. Numer. Methods Fluids 20 pp 1023– (1995) · Zbl 0846.76081 · doi:10.1002/fld.1650200820
[3] Davis, Int. J. Comput. Fluid Dyn. 1 pp 79– (1993) · doi:10.1080/10618569308904465
[4] Peraire, J. Comput. Phys. 72 pp 449– (1987) · Zbl 0631.76085 · doi:10.1016/0021-9991(87)90093-3
[5] Palmerio, Comput. Methods Appl. Mech. Eng. 71 pp 315– (1988) · Zbl 0662.76098 · doi:10.1016/0045-7825(88)90038-2
[6] Körnhuber, Impact Comput. Sci. Eng. 2 pp 40– (1990) · doi:10.1016/0899-8248(90)90003-S
[7] ?Génération de maillages éléments finis anisotropes et adaptatifs?. Ph.D. Thesis, Université Pierre et Marie Curie, Paris VI, France, 1992.
[8] and ?Error estimation and directionally adaptive meshing?, 25th AIAA Fluid Dynamics Conference, No. AIAA-94-2211, Colorado Springs, CO, June 1994.
[9] and ?Mesh adaptation for viscous compressible flows?, in M.M. Cecchi, K. Morgan, J. Periaux, B.A. Schrefler and O.C. Zienkiewicz (eds), Ninth International Conference on Finite Elements in Fluids, New Trends and Applications, Venezia, Italy, IACM, October 1995, pp. 1151-1160.
[10] and ?Anisotropic mesh optimization for structured and unstructured meshes?, 28th Computational Fluid Dynamics Lecture Series, von Karman Institute for Fluid Dynamics, March 1997.
[11] and ?Error interpolation minimization and anisotropic mesh generation?, in M. Morandi Cecchi, K. Morgan, J. Périaux, B.A. Schrefler and O.C. Zienkiewicz (eds), Ninth International Conference on Finite Elements in Fluids, New Trends and Applications, Venezia, Italy, IACM, October 1995, pp. 1139-1148.
[12] and ?Anisotropic grid adaptation for inviscid and viscous flows simulations?, 4th International Meshing Roundtable, Albuquerque, NM, October 1995, pp. 73-85.
[13] Castro-Díaz, Int. J. Numer. Methods Fluids 25 pp 475– (1997) · Zbl 0902.76057 · doi:10.1002/(SICI)1097-0363(19970830)25:4<475::AID-FLD575>3.0.CO;2-6
[14] D’Azevedo, SIAM J. Sci. Stat. Comput. 10 pp 1063– (1989) · Zbl 0705.41001 · doi:10.1137/0910064
[15] D’Azevedo, Numer. Math. 59 pp 321– (1991) · Zbl 0724.65006 · doi:10.1007/BF01385784
[16] Gui, Numer. Math. 48 pp 11– (1986)
[17] and ?A h-p adaptive finite element method for incompressible viscous flows?, The Mathematics of Finite Elements and Applications VII, Academic Press, New York, 1991.
[18] Automatic Mesh Generation: Application to Finite Element Methods, Wiley, New York, 1991. · Zbl 0808.65122
[19] Gnoffo, AIME J. 21 pp 1249– (1983) · Zbl 0526.76073 · doi:10.2514/3.8236
[20] ?A vectorized finite volume, adaptive grid algorithm for Navier-Stokes calculation?, in (ed.), Numerical Grid Generation, No. 9, Elsevier-North Holland, New York, 1982, pp. 819-835. · Zbl 0494.76031
[21] Nakahashi, AIAA J. 24 pp 948– (1985) · doi:10.2514/3.9369
[22] Nakahashi, AIAA J. 25 pp 513– (1987) · doi:10.2514/3.9655
[23] Palmerio, Comput. Fluids 23 pp 487– (1994) · Zbl 0812.76068 · doi:10.1016/0045-7930(94)90015-9
[24] Hawken, J. Comput. Phys. 95 pp 254– (1991) · Zbl 0733.65057 · doi:10.1016/0021-9991(91)90277-R
[25] Ait-Ali-Yahia, Int. J. Numer. Methods Fluids 23 pp 390– (1996) · Zbl 0884.76036 · doi:10.1002/(SICI)1097-0363(19961015)23:7<673::AID-FLD471>3.0.CO;2-P
[26] ?Méthodes des éléments finis en mécanique des fluides: conservation et autres propriétés?, Ph.D. Thesis, Université Laval, Québec, Canada.(1996).
[27] Löhner, Comput. Methods Appl. Mech. Eng. 75 pp 195– (1989) · Zbl 0689.68116 · doi:10.1016/0045-7825(89)90024-8
[28] ?A finite element segregated method for hypersonic thermo-chemical equilibrium and nonequilibrium flows using directionally-adaptive meshes?, Ph.D. Thesis, Department of Mechanical Engineering, Concordia University, Montreal, Quebec, Canada.(1996).
[29] and (eds.), Hypersonic Flows for Reentry Problems, vol. 3Springer, Berlin, 1991.
[30] and ?Hybrid Krylov methods for nonlinear systems of equations?, Tech. Rep. UCRL-97645, Lawrence Livermore National Laboratory, November 1987.
[31] Boivin, Int. J. Comput. Fluid Dyn. 1 pp 25– (1993) · doi:10.1080/10618569308904462
[32] Boivin, Int. J. Comput. Fluid Dyn. 7 pp 327– (1996) · Zbl 0903.76050 · doi:10.1080/10618569608940769
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.