×

Entropy-stable \(p\)-nonconforming discretizations with the summation-by-parts property for the compressible Navier-Stokes equations. (English) Zbl 1521.76326

Summary: The entropy-conservative/stable, curvilinear, nonconforming, \(p\)-refinement algorithm for hyperbolic conservation laws of D. C. Del Rey Fernández et al. [J. Comput. Phys. 392, 161–186 (2019; Zbl 1452.76085)] is extended from the compressible Euler equations to the compressible Navier-Stokes equations. A simple and flexible coupling procedure with planar interpolation operators between adjoining nonconforming elements is used. Curvilinear volume metric terms are numerically approximated via a minimization procedure and satisfy the discrete geometric conservation law conditions. Distinct curvilinear surface metrics are used on the adjoining interfaces to construct the interface coupling terms, thereby localizing the discrete geometric conservation law constraints to each individual element. The resulting scheme is entropy conservative/stable, element-wise conservative, and freestream preserving. Viscous interface dissipation operators that retain the entropy stability of the base scheme are developed. The accuracy and stability of the resulting numerical scheme are shown to be comparable to those of the original conforming scheme in [M. H. Carpenter et al., SIAM J. Sci. Comput. 36, No. 5, B835–B867 (2014; Zbl 1457.65140)] and [M. Parsani et al., SIAM J. Sci. Comput. 38, No. 5, A3129–A3162 (2016; Zbl 1457.65149)], i.e., this scheme achieves \(\sim p + 1 / 2\) convergence on geometrically high-order distorted element grids; this is demonstrated in the context of the viscous shock problem, the Taylor-Green vortex problem at a Reynolds number of \(R e = 1,600\), and a subsonic turbulent flow past a sphere at \(R e = 2,000\).

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76N06 Compressible Navier-Stokes equations

Software:

PETSc; PETSc/TS

References:

[1] Kreiss, H.-O.; Oliger, J., Comparison of accurate methods for the integration of hyperbolic equations, Tellus, 24, 3, 199-215 (1972)
[2] Swartz, B.; Wendroff, B., The relative efficiency of finite difference and finite element methods. I: Hyperbolic problems and splines, SIAM J Numer Anal, 11, 5, 979-993 (1974) · Zbl 0294.65055
[3] Hutchinson, M.; Heinecke, A.; Pabst, H.; Henry, G.; Parsani, M.; Keyes, D. E., Efficiency of high order spectral element methods on petascale architectures, Proceedings of the High Performance Computing - 31st International Conference, ISC High Performance, Frankfurt, Germany, 449-466 (2016)
[4] Hadri, B.; Parsani, M.; Hutchinson, M.; Heinecke, A.; Dalcin, L.; Keyes, D., Performance study of sustained petascale direct numerical simulation on Cray XC40 systems (Trinity, Shaheen2 and Cori), Concurr Comput: Pract Exp, e5725 (2019)
[5] Del Rey Fernández, D. C.; Hicken, J. E.; Zingg, D. W., Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations, Comput Fluids, 95, 22, 171-196 (2014) · Zbl 1390.65064
[6] Svärd, M.; Nordström, J., Review of summation-by-parts schemes for initial-boundary-value-problems, J Comput Phys, 268, 1, 17-38 (2014) · Zbl 1349.65336
[7] Carpenter, M. H.; Gottlieb, D.; Abarbanel, S., Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes, J Comput Phys, 111, 2, 220-236 (1994) · Zbl 0832.65098
[8] Carpenter, M. H.; Nordström, J.; Gottlieb, D., A stable and conservative interface treatment of arbitrary spatial accuracy, J Computat Phys, 148, 2, 341-365 (1999) · Zbl 0921.65059
[9] Nordström, J.; Carpenter, M. H., Boundary and interface conditions for high-order finite-difference methods applied to the Euler and Navier-Stokes equations, J Computat Phys, 148, 2, 621-645 (1999) · Zbl 0921.76111
[10] Nordström, J.; Carpenter, M. H., High-order finite-difference methods, multidimensional linear problems, and curvilinear coordinates, J Computat Phys, 173, 1, 149-174 (2001) · Zbl 0987.65081
[11] Carpenter, M. H.; Nordström, J.; Gottlieb, D., Revisiting and extending interface penalties for multi-domain summation-by-parts operators, J Sci Comput, 45, 1-3, 118-150 (2010) · Zbl 1203.65176
[12] Svärd, M.; Özcan, H., Entropy-stable schemes for the Euler equations with far-field and wall boundary conditions, J Sci Comput, 58, 1, 61-89 (2014) · Zbl 1290.65084
[13] Parsani, M.; Carpenter, M. H.; Nielsen, E. J., Entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations, J Computat Phys, 292, 1, 88-113 (2015) · Zbl 1349.76639
[14] Parsani, M.; Carpenter, M. H.; Nielsen, E. J., Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier-Stokes equations, J Computat Phys, 290, 132-138 (2015) · Zbl 1349.76250
[15] Dalcin, L.; Rojas, D.; Zampini, S.; Del Rey Fernández, D. C.; Carpenter, M. H.; Parsani, M., Conservative and entropy stable solid wall boundary conditions for the compressible Navier-Stokes equations: Adiabatic wall and heat entropy transfer, J Computat Phys, 397 (2019) · Zbl 1453.76068
[16] Tadmor, E., The numerical viscosity of entropy stable schemes for systems of conservation laws I, Math Comput, 49, 179, 91-103 (1987) · Zbl 0641.65068
[17] Tadmor, E., Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numerica, 12, 451-512 (2003) · Zbl 1046.65078
[18] Fjordholm, U. S.; Mishra, S.; Tadmor, E., Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws, Commun Comput Phys, 50, 2, 554-573 (2012) · Zbl 1252.65150
[19] Ray, D.; Chandrashekar, P.; Fjordhom, U. S.; Mishra, S., Entropy stable scheme on two-dimensional unstructured grids for Euler equations, Commun Comput Phys, 19, 5, 1111-1140 (2016) · Zbl 1373.76143
[20] Fisher, T. C., High-order l^2 stable multi-domain finite difference method for compressible flows (2012), Purdue University
[21] Fisher, T. C.; Carpenter, M. H.; Nordström, J.; Yamaleev, N. K., Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: Theory and boundary conditions, J Computat Phys, 234, 1, 353-375 (2013) · Zbl 1284.65102
[22] Fisher, T. C.; Carpenter, M. H., High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J Computat Phys, 252, 518-557 (2013) · Zbl 1349.65293
[23] Sjörn, B.; Yee, H. C., Adjoint error estimation and adaptive refinement for embedded-boundary Cartesian meshes, Proceedings of ENUMATH09. Uppsala University, Sweden (2009)
[24] Sjörn, B.; Yee, H. C., High order entropy conservative central schemes for wide ranges of compressible gas dynamics and MHD flows, J Comput Phys, 364, 153-185 (2018) · Zbl 1392.76045
[25] Carpenter, M. H.; Fisher, T. C.; Nielsen, E. J.; Frankel, S. H., Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces, SIAM J Sci Comput, 36, 5, B835-B867 (2014) · Zbl 1457.65140
[26] Winters, A. R.; J. Gassner, G., A comparison of two entropy stable discontinuous Galerkin spectral element approximations to the shallow water equations with non-constant topography, J Computat Phys, 301, 1, 357-376 (2015) · Zbl 1349.76285
[27] Parsani, M.; Carpenter, M. H.; Fisher, T. C.; Nielsen, E. J., Entropy stable staggered grid discontinuous spectral collocation methods of any order for the compressible Navier-Stokes equations, SIAM J Sci Comput, 38, 5, A3129-A3162 (2016) · Zbl 1457.65149
[28] Carpenter, M. H.; Parsani, M.; Fisher, T. C.; Nielsen, E. J., Towards and entropy stable spectral element framework for computational fluid dynamics, Proceedings of the 54th AIAA Aerospace Sciences Meeting (2016), American Institute of Aeronautics and Astronautics (AIAA)
[29] Winters, A. R.; Gassner, G. J., Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, J Computat Phys, 304, 1, 72-108 (2016) · Zbl 1349.76407
[30] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations, Appl Math Comput, 272, 2, 291-308 (2016) · Zbl 1410.65393
[31] Winters, A. R.; Derigs, D.; Gassner, G. J.; Walch, S., Uniquely defined entropy stable matrix dissipation operator for high Mach number ideal MHD and compressible Euler simulations, J Computat Phys, 332, 1, 274-289 (2017) · Zbl 1378.76144
[32] Chen, T.; Shu, C.-W., Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J Computat Phys, 345, 427-461 (2017) · Zbl 1380.65253
[33] Derigs, D.; Winters, A. R.; J. Gassner, G.; Walch, S., A novel averaging technique for discrete entropy-stable dissipation operators for ideal MHD, J Computat Phys, 330, 1, 624-632 (2017) · Zbl 1378.76131
[34] Wintermeyer, N.; Winters, A. R.; Gassner, G. J.; Kopriva, D. A., An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry, J Computat Phys, 340, 1, 200-242 (2017) · Zbl 1380.65291
[35] Crean, J.; Hicken, J. E.; Del Rey Fernández, D. C.; Zingg, D. W.; Carpenter, M. H., Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements, J Computat Phys, 356, 410-438 (2018) · Zbl 1380.76080
[36] Chan, J., On discretely entropy conservative and entropy stable discontinuous Galerkin methods, J Computat Phys, 362, 346-374 (2018) · Zbl 1391.76310
[37] Del Rey Fernández, D. C.; Crean, J.; Carpenter, M. H.; Hicken, J. E., Staggered entropy-stable summation-by-parts discretization of the Euler equations on general curved elements, J Computat Phys, 392, 161-186 (2019) · Zbl 1452.76085
[38] Hughes, T. J.R.; Franca, L. P.; Mallet, M., A new finite element formulation for computational fluid dynamics, I: symmetric forms of the compressible Navier-Stokes equations and the second law of thermodynamics, Comput Methods Appl Mech Eng, 54, 2, 223-234 (1986) · Zbl 0572.76068
[39] Friedrich, L.; Shnücke, G.; Winters, A. R.; Del Rey Fernández, D. C.; Gassner, G. J.; Carpenter, M. H., Entropy stable space-time discontinuous Galerkin schemes with summation-by-parts property for hyperbolic conservation laws, J Sci Comput, 80, 1, 175-222 (2019) · Zbl 1421.35262
[40] Ranocha, H.; Sayyari, M.; Dalcin, L.; Parsani, M.; Ketcheson, D. I., Relaxation Runge-Kutta methods: Fully-discrete explicit entropy-stable schemes for the Euler and Navier-Stokes equations, 42, 2, A612-A638 (2020) · Zbl 1432.76207
[41] Olsson, P.; Oliger, J., Energy and maximum norm estimates for nonlinear conservation laws, Tech. Rep. (1994), The Research Institute of Advanced Computer Science
[42] Gerritsen, M.; Olsson, P., Designing an efficient solution strategy for fluid flows 1. A stable high order finite difference scheme and sharp shock resolution for the Euler equations, J Computat Phys, 129, 2, 245-262 (1996) · Zbl 0899.76281
[43] Yee, H. C.; Vinokur, M.; Djomehri, M. J., Entropy splitting and numerical dissipation, J Computat Phys, 162, 1, 33-81 (2000) · Zbl 0987.65086
[44] Sandham, N. D.; Li, Q.; Yee, H. C., Entropy splitting for high-order numerical simulation of compressible turbulence, J Computat Phys, 178, 2, 307-322 (2002) · Zbl 1139.76332
[45] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J Computat Phys, 327, C, 39-66 (2016) · Zbl 1422.65280
[46] Winters, A. R.; Moura, R. C.; Mengaldo, G.; Gassner, G. J.; Walch, S.; Peiro, J., A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations, J Computat Phys, 372, 1-21 (2018) · Zbl 1415.76461
[47] Pazner, W.; Persson, P.-O., Analysis and entropy stability of the line-based discontinuous Galerkin method, J Sci Comput, 80, 1, 376-402 (2019) · Zbl 1418.65136
[48] Flad, D.; Gassner, G. J., On the use of kinetic energy preserving DG-schemes for large eddy simulation, J Computat Phys, 350, 782-795 (2017) · Zbl 1380.76019
[49] Klose, B. F.; Jacobs, G. B.; Kopriva, D. A., On the robustness and accuracy of marginally resolved discontinuous Galerkin schemes for two dimensional Navier-Stokes flows, Proceedings of the AIAA Scitech 2019 Forum, 0780 (2019), American Institute of Aeronautics and Astronautics
[50] Rojas, D.; Boukharfane, R.; Dalcin, L.; Del Rey Fernández, D. C.; Ranocha, H.; Keyes, D., On the robustness and performance of entropy stable discontinuous collocation methods for the compressible Navier-Stokes equations, J. Comput. Phys. (2020)
[51] Parsani, M.; Boukharfane, R.; Nolasco, I.; Del Rey Fernández, D. C.; Zampini, S.; Dalcin, L., Unveiling the potential of high-order accurate entropy stable discontinuous collocated Galerkin methods for the next generation of compressible CFD frameworks: SSDC algorithms and flow solver, J Comput Phys (2020)
[52] Mattsson, K.; Carpenter, M. H., Stable and accurate interpolation operators for high-order multiblock finite difference methods, SIAM J Sci Comput, 32, 4, 2298-2320 (2010) · Zbl 1216.65107
[53] Nissen, A.; Kreiss, G.; Gerritsen, M., Stability at nonconforming grid interfaces for a high order discretization of the Schrödinger equation, J Sci Comput, 53, 528-551 (2012) · Zbl 1272.65071
[54] Nissen, A.; Kormann, K.; Grandin, M.; Virta, K., Stable difference methods for block-oriented adaptive grids, J Sci Comput, 65, 486-511 (2015) · Zbl 1408.65054
[55] Kozdon, J. E.; Wilcox, L. C., Stable coupling of nonconforming, high-order finite difference methods, SIAM J Sci Comput, 38, 2, A923-A952 (2016) · Zbl 1380.65160
[56] Wang, S.; Virta, K.; Kreiss, G., High order finite difference methods for the wave equation with non-conforming grid interfaces, J Sci Comput, 68, 1002-1028 (2016) · Zbl 1352.65274
[57] Wang, S., An improved high order finite difference method for non-conforming grid interfaces for the wave equation, J Sci Comput, 77, 775-792 (2018) · Zbl 1407.65132
[58] Almquist, M.; Wang, S.; Werpers, J., Order-preserving interpolation for summation-by-parts operators at nonconforming grid interfaces, SIAM J Sci Comput, 41, A1201-A1227 (2019) · Zbl 1415.65182
[59] Ålund, O.; Nordström, J., Encapsulated high order difference operators on curvilinear non-conforming grids, J Computat Phys, 385, 209-224 (2019) · Zbl 1451.65103
[60] Del Rey Fernández DC, Carpenter MH, Dalcin L, Fredrich L, Winters AR, Gassner GJ, et al. Entropy stable non-conforming discretizations with the summation-by-parts property for curvilinear coordinates. NASA TM-2019-2189902019b.
[61] Friedrich, L.; Winters, A. R.; Del Rey Fernández, D. C.; Gassner, G. J.; Parsani, M.; Carpenter, M. H., An entropy stable h/p non-conforming discontinuous Galerkin method with the summation-by-parts property, J Sci Comput, 1-37 (2018) · Zbl 1407.65185
[62] Del Rey Fernández, D. C.; Carpenter, M. H.; Dalcin, L.; Zampini, S.; Parsani, M., Entropy stable h/p non-conforming discretization with the summation-by-parts property for the compressible Euler and Navier-Stokes equations, SN Partial Differ Equ Appl, 1, 2 (2020) · Zbl 1454.65123
[63] Carpenter MH, Parsani M, Fisher TC, Nielsen EJ. Entropy stable staggered grid spectral collocation for the Burgers’ and compressible Navier-Stokes equations. NASA TM-2015-2189902015. · Zbl 1457.65149
[64] Del Rey Fernández, D. C.; Boom, P. D.; Zingg, D. W., A generalized framework for nodal first derivative summation-by-parts operators, J Computat Phys, 266, 1, 214-239 (2014) · Zbl 1311.65002
[65] Lundquist, T.; Nordström, J., On the suboptimal accuracy of summation-by-parts schemes with non-conforming block interfaces, Tech. Rep. (2016), Linköping University
[66] Friedrich, L.; Del Rey Fernández, D. C.; Winters, A. R.; Gassner, G. J.; Zingg, D. W.; Hicken, J. E., Conservative and stable degree preserving SBP operators for non-conforming meshes, J Sci Comput, 75, 2, 657-686 (2018) · Zbl 1404.65087
[67] Vinokur, M.; Yee, H. C., Extension of efficient low dissipation high order schemes for 3-d curvilinear moving grids, (Caughey, D. A.; Hafez, M., Frontiers of Computational Fluid Dynamics (2002), World Scientific Publishing Company), 129-164 · Zbl 1047.76559
[68] Thomas, D.; Lombard, C. K., Geometric conservation law and its application to flow computations on moving grids, AIAA J, 17, 10, 1030-1037 (1979) · Zbl 0436.76025
[69] Dafermos, C. M., Hyperbolic conservation laws in continuum physics (2010), Springer-Verlag, Berlin · Zbl 1196.35001
[70] Svärd, M., Weak solutions and convergent numerical schemes of modified compressible Navier-Stokes equations, J Computat Phys, 288, C, 19-51 (2015) · Zbl 1351.76187
[71] Shi, C.; Shu, C.-W., On local conservation of numerical methods for conservation laws, Comput Fluids, 169, 4, 3-9 (2018) · Zbl 1410.65327
[72] Ranocha H, Dalcin L, Parsani M. Fully discrete explicit locally entropy-stable schemes for the compressible Euler and Navier-Stokes equations. 2020b. 2003.08831. · Zbl 1432.76207
[73] Nolasco, I. R.; Dalcin, L.; Fernández, D. C.D. R.; Zampini, S.; Parsani, M., Optimized geometrical metrics satisfying free-stream preservation, Comput Fluids, 207 (2020) · Zbl 1502.76079
[74] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K., PETSc users manual, Tech. Rep. (2019), Argonne National Laboratory
[75] Knepley, M. G.; Karpeev, D. A., Mesh algorithms for PDE with Sieve I: Mesh distribution, Sci Program, 17, 3, 215-230 (2009)
[76] Abhyankar S, Brown J, Constantinescu EM, Ghosh D, Smith BF, Zhang H. PETSc/TS: A modern scalable ODE/DAE solver library. 1806014372018.
[77] Dormand, J. R.; Prince, P. J., A family of embedded Runge-Kutta formulae, J Comput Appl Math, 6, 1, 19-26 (1980) · Zbl 0448.65045
[78] Söderlind, G., Digital filters in adaptive time-stepping, ACM Trans Math Softw, 29, 1, 1-26 (2003) · Zbl 1097.93516
[79] Söderlind, G.; Wang, L., Adaptive time-stepping and computational stability, J Comput Appl Math, 185, 2, 225-243 (2006) · Zbl 1077.65086
[80] Chandrashekar, P., Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun Comput Phys, 14, 5, 1252-1286 (2013) · Zbl 1373.76121
[81] de Wiart, C.; Hillewaert, K.; Duponcheel, M.; Winckelmans, G., Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number, Int J Numer Methods Fluids, 74, 7, 469-493 (2014) · Zbl 1455.65163
[82] Carpenter, M. H.; Fisher, T. C.; Nielsen, E. J.; Parsani, M.; Svärd, M.; Yamaleev, N., Entropy stable summation-by-parts formulations for computational fluid dynamics, Handbook of numerical analysis, 495-524 (2016)
[83] Munson, B. R.; Young, B. F.; Okiishi, T. H., Fundamental of fluid mechanics (1990), Wiley · Zbl 0747.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.