×

Krylov subspace recycling for evolving structures. (English) Zbl 1507.74351

Summary: Krylov subspace recycling is a powerful tool when solving a long series of large, sparse linear systems that change only slowly over time. In PDE constrained shape optimization, these series appear naturally, as typically hundreds or thousands of optimization steps are needed with only small changes in the geometry. In this setting, however, applying Krylov subspace recycling can be a difficult task. As the geometry evolves, in general, so does the finite element mesh defined on or representing this geometry, including the numbers of nodes and elements and element connectivity. This is especially the case if re-meshing techniques are used. As a result, the number of algebraic degrees of freedom in the system changes, and in general the linear system matrices resulting from the finite element discretization change size from one optimization step to the next. Changes in the mesh connectivity also lead to structural changes in the matrices. In the case of re-meshing, even if the geometry changes only a little, the corresponding mesh might differ substantially from the previous one. Obviously, this prevents any straightforward mapping of the approximate invariant subspace of the linear system matrix (the focus of recycling in this paper) from one optimization step to the next; similar problems arise for other selected subspaces. In this paper, we present an algorithm to map an approximate invariant subspace of the linear system matrix for the previous optimization step to an approximate invariant subspace of the linear system matrix for the current optimization step, for general meshes. This is achieved by exploiting the map from coefficient vectors to finite element functions on the mesh, combined with interpolation or approximation of functions on the finite element mesh. We demonstrate the effectiveness of our approach numerically with several proof of concept studies for a specific meshing technique.

MSC:

74P20 Geometrical methods for optimization problems in solid mechanics
49M41 PDE constrained optimization (numerical aspects)
49Q10 Optimization of shapes other than minimal surfaces
65K10 Numerical optimization and variational techniques
74P15 Topological methods for optimization problems in solid mechanics

References:

[1] Wang, S.; de Sturler, E.; Paulino, G. H., Large-scale topology optimization using preconditioned krylov subspace methods with recycling, Internat. J. Numer. Methods Engrg., 69, 2441-2468 (2007) · Zbl 1194.74265
[2] Wang, S., Krylov Subspace Methods for Topology Optimization on Adaptive Meshes (2007), University of Illinois at Urbana-Champaign, Department of Computer Science, Advisor: Eric de Sturler, (Ph.D. thesis)
[3] S. Wang, E. de Sturler, G.H. Paulino, Dynamic Adaptive Mesh Refinement for Topology Optimization, Tech. rep., 2009, arxiv.orgarxiv.orgarXiv:1009.4975 URL arxiv.orgarXiv:1009.4975https://arxiv.org/abs/1009.4975.
[4] Nicolaides, R. A., Deflation of conjugate gradients with applications to boundary value problems, SIAM J. Numer. Anal., 24, 2, 355-365 (1987) · Zbl 0624.65028
[5] Dostál, Z., Conjugate gradient method with preconditioning by projector, Int. J. Comput. Math., 23, 3-4, 315-323 (1988), doi: 10.1080/00207168808803625 · Zbl 0668.65034
[6] Saad, Y.; Yeung, M.; Erhel, J.; Guyomarc’h, F., A deflated version of the conjugate gradient algorithm, SIAM J. Sci. Comput., 21, 5, 1909-1926 (2000) · Zbl 0955.65021
[7] Motta Mello, L.; de Sturler, E.; Paulino, G.; Nelli Silva, E. C., Recycling krylov subspaces for efficient large-scale electrical impedance tomography, Comput. Methods Appl. Mech. Engrg., 199, 3101-3110 (2010) · Zbl 1225.92026
[8] Kilmer, M. E.; de Sturler, E., Recycling subspace information for diffuse optical tomography, SIAM J. Sci. Comput., 27, 6, 2140-2166 (2006) · Zbl 1103.65036
[9] Hestenes, M. R.; Stiefel, E., Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bureau Stand., 49, 409-436 (1952), (1953) · Zbl 0048.09901
[10] Paige, C. C.; Saunders, M. A., Solutions of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12, 4, 617-629 (1975) · Zbl 0319.65025
[11] Stathopoulos, A.; Orginos, K., Computing and deflating eigenvalues while solving multiple right-hand side linear systems with an application to quantum chromodynamics, SIAM J. Sci. Comput., 32, 1, 439-462 (2010), URL https://www.siam.org/journals/sisc/32-1/72553.hml · Zbl 1209.65046
[12] Darnell, D.; Morgan, R. B.; Wilcox, W., Deflated GMRES for systems with multiple shifts and multiple right hand sides, Linear Algebra Appl., 429, 2415-2434 (2008) · Zbl 1153.65032
[13] Feng, L.; Benner, P.; Korvink, J. G., Subspace recycling accelerates the parametric macro-modeling of MEMS, Internat. J. Numer. Methods Engrg., 94, 1, 84-110 (2013) · Zbl 1352.74479
[14] Gosselet, P.; Rey, C.; Pebrel, J., Total and selective reuse of Krylov subspaces for the resolution of sequences of nonlinear structural problems, Internat. J. Numer. Methods Engrg., 94, 1, 60-83 (2013) · Zbl 1352.65105
[15] Amritkar, A.; de Sturler, E.; Świrydowicz, K.; Tafti, D.; Ahuja, K., Recycling krylov subspaces for CFD applications and a new hybrid recycling solver, J. Comput. Phys., 303, 222-237 (2015) · Zbl 1349.76581
[16] Ahuja, K.; Benner, P.; de Sturler, E.; Feng, L., Recycling BiCGSTAB with an application to parametric model order reduction, SIAM J. Sci. Comput., 37, 5, S429-S446 (2015) · Zbl 1325.65044
[17] Carvalho, L. M.; Gratton, S.; Lago, R.; Vasseur, X., A flexible generalized conjugate residual method with inner orthogonalization and deflated restarting, SIAM J. Matrix Anal. Appl., 32, 4, 1212-1235 (2011) · Zbl 1244.65047
[18] Carlberg, K.; Forstall, V.; Tuminaro, R., Krylov-subspace recycling via the POD-augmented conjugate-gradient method, SIAM J. Matrix Anal. Appl., 37, 3, 1304-1336 (2016) · Zbl 1348.15005
[19] G.B.D. Cortes, C. elis Vuik, J.-D. Jansen, Accelerating the solution of linear systems appearing in two-phase reservoir simulation by the use of POD-based deflation methods, Comput. Geosci., 0000. http://dx.doi.org/10.1007/s10596-021-10041-6. · Zbl 1473.65035
[20] Jolivet, P.; Tournier, P.-H., Block iterative methods and recycling for improved scalability of linear solvers, (SC16 - Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (2016), IEEE Press)
[21] Roux, F.-X.; Barka, A., Block Krylov recycling algorithms for FETI-2LM applied to 3-d electromagnetic wave scattering and radiation, IEEE Trans. Antennas and Propagation, 65, 4, 1886-1895 (2017) · Zbl 1395.78042
[22] Al Daas, H.; Grigori, L.; Hénon, P.; Ricoux, P., Recycling Krylov subspaces and truncating deflation subspaces for solving sequences of linear systems, ACM Trans. Math. Software, 47, 2, 13:1-13:30 (2021) · Zbl 07467973
[23] K.M. Soodhalter, E. de Sturler, M.E. Kilmer, A survey of subspace recycling iterative methods, GAMM Mitteilungen, 43, (4), 0000. http://dx.doi.org/10.1002/gamm.202000016. · Zbl 1541.65019
[24] van der Vorst, H. A., (Iterative Krylov Methods for Large Linear Systems. Iterative Krylov Methods for Large Linear Systems, Cambridge Monographs on Applied and Computational Mathematics, vol. 13 (2009), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 1178.65034
[25] Paige, C. C.; Parlett, B. N.; van der Vorst, H. A., Approximate solutions and eigenvalue bounds from Krylov subspaces, Numer. Linear Algebra Appl., 2, 2, 115-134 (1995) · Zbl 0831.65036
[26] Saad, Y., Iterative Methods for Sparse Linear Systems, Vol. 82 (2003), SIAM · Zbl 1031.65046
[27] M. Staten, S. Owen, S. Shontz, A. Salinger, T. Coffey, A comparison of mesh morphing methods for 3D shape optimization, in: Proceedings of the 20th International Meshing Roundtable, 2011, pp. 293-311.
[28] Hirt, C.; Amsden, A.; Cook, J., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 227-253 (1974) · Zbl 0292.76018
[29] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 84-512 (1984) · Zbl 0536.65071
[30] Parks, M. L.; de Sturler, E.; Mackey, G.; Johnson, D. D.; Maiti, S., Recycling Krylov subspaces for sequences of linear systems, SIAM J. Sci. Comput., 28, 5, 1651-1674 (2006) · Zbl 1123.65022
[31] Hackbusch, W.; Sauter, S., Adaptive composite finite elements for the solution of PDEs containing nonuniformely distributed micro-scales, Matem. Mod., 8, 31-43 (1996) · Zbl 0981.65513
[32] Hackbusch, W.; Sauter, S., Composite finite elements for problems containing small geometric details, Comput. Vis. Sci., 1, 15-25 (1997) · Zbl 1001.65127
[33] Hackbusch, W.; Sauter, S., Composite finite elements for the approximation of PDEs on domains with complicated micro-structures, Numer. Math., 75, 447-472 (1997) · Zbl 0874.65086
[34] M. Bolten, C. Hahn, Structured meshes for PDE constrained shape optimization, in preparation. · Zbl 1469.65162
[35] Golub, G. H.; van Loan, C. F., Matrix Computations (1996), The Johns Hopkins University Press: The Johns Hopkins University Press Baltimore and London · Zbl 0865.65009
[36] Haslinger, J.; Mäkinen, R. A.E., Introduction to Shape Optimization: Theory, Approximation, and Computation (2003), SIAM: SIAM Philadelphia · Zbl 1020.74001
[37] Bolten, M.; Gottschalk, H.; Schmitz, S., Minimal failure probability for ceramic design via shape control, J. Optim. Theory Appl., 983-1001 (2015) · Zbl 1322.49070
[38] M. Bolten, H. Gottschalk, C. Hahn, M. Saadi, Numerical shape optimization to decrease failure probability of ceramic structures, Comput. Visual Sci., 0000 http://dx.doi.org/10.1007/s00791-019-00315-z. · Zbl 07704833
[39] Schulz, V.; Siebenborn, M.; Welker, K., Efficient PDE constrained shape optimization based on Steklov-Poincaré-type metrics, SIAM J. Optim., 26, 2800-2819 (2016) · Zbl 1354.49095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.