×

An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques. (English) Zbl 1349.76580

Summary: The interest on embedded boundary methods increases in Computational Fluid Dynamics (CFD) because they simplify the mesh generation problem in the case of the Navier-Stokes equations. The same simplifications occur for the simulation of multi-physics flows, the coupling of fluid-solid interactions in situation of large motions or deformations, to give a few examples. Nevertheless an accurate treatment of the wall boundary conditions remains an issue of the method. In this work, the wall boundary conditions are easily taken into account through a penalization technique, and the accuracy of the method is recovered using mesh adaptation, thanks to the potential of unstructured meshes. Several classical examples are used to demonstrate that claim.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M85 Fictitious domain methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

PaStiX

References:

[1] Metis home page (2006)
[2] Alauzet, F.; Loseille, A.; Dervieux, A.; Frey, P., Multi-dimensional continuous metric for mesh adaptation, (Proc.of 15th Int. Meshing Roundtable (2006))
[3] Angot, P.; Bruneau, C. H.; Fabrie, P., A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., 81, 4, 497-520 (1999) · Zbl 0921.76168
[4] Azevedo, E. F.D.; Simpson, R. B., On optimal triangular meshes for minimizing the gradient error, Numer. Math., 59, 321-348 (1991) · Zbl 0724.65006
[5] Benson, D., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Eng., 99, 235-394 (1992) · Zbl 0763.73052
[6] Boiron, O.; Chiavassa, G.; Donat, R., A high-resolution penalization method for large Mach number flows in the presence of obstacles, Comput. Fluids, 38, 3, 703-714 (2009) · Zbl 1193.76097
[7] Bossen, F. J.; Heckbert, P. S., A pliant method for anisotropic mesh generation, (Proc. of 5th Int. Meshing Roundtable (1996))
[8] Braconnier, B.; Nkonga, B.; Papin, M.; Ramet, P.; Ricchiuto, M.; Roman, J.; Abgrall, R., Efficient solution technique for low Mach number compressible multiphase problems, (Proceedings of PMAA 2006. Proceedings of PMAA 2006, Rennes (September 2006))
[9] Bui, C.; Dapogny, C.; Frey, P., An accurate anisotropic adaptation method for solving the level set advection equation, Int. J. Numer. Methods Fluids (2011) · Zbl 1412.65133
[10] Choi, J. I.; Oberoi, R. C.; Edwards, J. R.; Rosati, J. A., An immersed boundary method for complex incompressible flows, J. Comput. Phys., 224, 757-784 (2007) · Zbl 1123.76351
[11] Coquerelle, M.; Cottet, G. H., A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies, J. Comput. Phys., 227, 21, 9121-9137 (2008) · Zbl 1146.76038
[12] Dobrzynski, C.; Frey, P., MMG3D home page
[13] Dobrzynski, C.; Frey, P., Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations, (Proc. of 17th Int. Meshing Roundtable, Pittsburgh, USA (2008))
[14] Dolejsi, V., Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes, Comput. Vis. Sci., 1, 165-178 (1998) · Zbl 0917.68214
[15] Dompierre, J.; Vallet, M.-G.; Bourgault, Y.; Fortin, M.; Habashi, W. G., Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent cfd. part iii: unstructured meshes, Int. J. Numer. Methods Fluids, 39, 675-702 (2002) · Zbl 1101.76356
[16] Farhat, C.; Geuzaine, P.; Grandmont, C., The discrete geometric conservation law and the nonlinear stability of ale schemes for the solution of flow problems on moving grids, J. Comput. Phys., 174, 669-694 (2001) · Zbl 1157.76372
[17] Fedkiw, R. P., Coupling an eulerian fluid calculation to a lagrangian solid calculation with the ghost fluid method, J. Comput. Phys., 175, 200-224 (2002) · Zbl 1039.76050
[18] Fezoui, L.; Stoufflet, B., A class of implicit upwind schemes for Euler simulations with unstructured meshes, J. Comput. Phys., 84, 1, 174-206 (1989) · Zbl 0677.76062
[19] Formaggia, L.; Perotto, S., New anisotropic a priori error estimates, Numer. Math., 89, 641-667 (2001) · Zbl 0990.65125
[20] Frey, P. J.; Alauzet, F., Anisotropic mesh adaptation for cfd simulations, Comput. Methods Appl. Mech. Eng., 194, 48-49, 5068-5082 (2005) · Zbl 1092.76054
[21] Frey, P. J.; George, P.-L., Mesh Generation. Application to Finite Elements (2008), Wiley: Wiley Paris · Zbl 1156.65018
[22] George, P.-L.; Borouchaki, H.; Frey, P. J.; Laug, P.; Saltel, E., Mesh generation and mesh adaptivity: theory, techniques, (Stein, E.; de Borst, R.; Hugues, T. J.R., Encyclopedia of Computational Mechanics (2004), John Wiley & Sons Ltd.)
[23] George, P. L.; Hecht, F.; Vallet, M. G., Creation of internal points in Voronoiʼs type method. Control adaptation, Adv. Eng. Softw. Workstn., 13, 5-6, 303-312 (1991) · Zbl 0754.65095
[24] Ghias Mittal, R.; Dong, H., A sharp interface immersed boundary method for compressible viscous flows, J. Comput. Phys., 225, 528-553 (2007) · Zbl 1343.76043
[25] Glimanov, A.; Sotiropoulos, F., A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies, J. Comput. Phys., 207, 457-492 (2005) · Zbl 1213.76135
[26] Gruau, C.; Coupez, T., 3D unstructured ans anisotropic mesh generation with adaptation to natural and multidomain metric, Comput. Methods Appl. Mech. Eng., 194, 48-49, 4951-4976 (2005) · Zbl 1102.65122
[27] Hénon, P.; Ramet, P.; Roman, J., PaStiX: a high-performance parallel direct solver for sparse symmetric definite systems, Parallel Comput., 28, 2, 301-321 (January 2002) · Zbl 0984.68208
[28] Hu, X. Y.; Khoo, B. C.; Adams, N. A.; Huang, F. L., A conservative interface method for compressible flows, J. Comput. Phys., 219, 553-578 (2006) · Zbl 1102.76038
[29] Isola, D.; Guardone, A.; Quaranta, G., Arbitrary lagrangian eulerian formulation for two-dimensional flows using dynamic meshes with edge swapping, J. Comput. Phys., 230, 7706-7722 (2011) · Zbl 1433.76146
[30] Kalitzin, G.; Iaccarino, G., Turbulence modeling in an immersed-boundary RANS method (2002), Annual Research Briefs, Center for Turbulence Research
[32] Lepage, Claude Y.; Habashi, Wagdi G., Fluid-structure interactions using the ale formulation (1999), AIAA-Paper 99-0660
[33] Lohner, R.; Baum, J. D.; Mestreau, E. L.; Sharov, D.; Charman, C.; Pelessone, D., Adaptative embbeded unstructured grid methods (2003), AIAA-Paper 03-1116
[34] Mark, A.; van Wachem, B. G.M., Derivation and validation of a novel implicit second-order accurate immersed boundary method, J. Comput. Phys., 227, 13, 6660-6680 (2008) · Zbl 1338.76098
[35] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 1, 239-261 (2005) · Zbl 1117.76049
[36] Mittal, R.; Seshadri, V.; Udaykumar, H. S., Flutter, tumble and vortex induced autorotation, Theor. Comput. Fluid Dyn., 17, 165-170 (2004) · Zbl 1078.76020
[37] Nkonga, B.; Guillard, H., Godunov type method on non-structured meshes for three-dimensional moving boundary problems, Comput. Methods Appl. Mech. Eng., 113, 1-2, 183-204 (1994) · Zbl 0846.76060
[38] Pellegrini, F., Scotch home page (2008)
[39] Roma, Alexandre M.; Peskin, Charles S.; Berger, Marsha J., An adaptive version of the immersed boundary method, J. Comput. Phys., 153, 2, 509-534 (1999) · Zbl 0953.76069
[40] Sethian, J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry (1996), Cambridge University Press · Zbl 0859.76004
[41] Tan, S.; Wang, C.; Shu, C.-W.; Ning, J., Efficient implementation of high order inverse Lax-Wendroff boundary treatment for conservation laws, J. Comput. Phys., 231, 6, 2510-2527 (2012) · Zbl 1430.65005
[42] Wang, K.; Rallu, A.; Gerbeau, J.-F.; Farhat, C., Algorithms for interface treatment and load computation in embedded boundary methods for fluids and fluid-structure interaction problems, Int. J. Numer. Methods Fluids, 67, 1175-1206 (2011) · Zbl 1426.76436
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.