×

Non-compact Einstein manifolds with symmetry. (English) Zbl 1516.53049

The paper is devoted to the study of \(n\)-dimensional Einstein manifolds \(M\) of negative scalar curvature which admit a sufficiently large isometry group \(G\).
One of the main results is the proof of a conjecture by D. V. Alekseevskii [Mat. Sb., Nov. Ser. 96(138), 93–117 (1975; Zbl 0309.53037)]:
Conjecture. Any homogeneous Einstein manifold of negative scalar curvature is diffeomorphic to \(\mathbb{R}^n\) and is a solvmanifold, i.e., it admits a transitive solvable group of isometries.
The above claim reduces the classification of non-compact homogeneous Einstein spaces to that of nilsolitons in the sense of J. Lauret [Math. Ann. 319, No. 4, 715–733 (2001; Zbl 0987.53019)].
The authors derive several corollaries:
(i) Any homogeneous expanding Ricci soliton is isometric to a solvsoliton and diffeomorphic to \(\mathbb{R}^n\);
(ii) Any homogeneous quaternionic Kähler manifold is either a compact symmetric Wolf space or a non-compact Alekseevsky space associated to a Clifford module;
(iii) Any compact, locally homogeneous Einstein manifold with negative scalar curvature is locally symmetric.
Surprisingly, to prove the Alekseevsky conjecture, the authors relax the homogeneity assumption as follows:
Assumption. \(M\) is a connected, complete Riemannian manifold which admits an isometry group \(G\) such that the orbit space \(B = M/G\) is a compact smooth manifold.
Then they prove the following statements.
Theorem. Let \(M\) be a Riemannian manifold of negative Ricci curvature:
(i) Then any unimodular Lie group \(G\) satisfying assumption must be non-compact semisimple;
(ii) Assume, moreover, that \(M\) is an Einstein manifold and \(G\) is a non-unimodular Lie group satisfying the above assumption. Then, the induced action of the nilradical \(N\) of \(G\) on \(M\) is polar and \(M\) is foliated into pairwise locally isometric, minimal Einstein submanifolds.
Corollary. For any \(k \geq 8\), there exist infinitely many \(k\)-dimensional, pairwise non-isomorphic Lie groups \(G\), such that for any compact manifold \(B\) of dimension \(d \geq 3\), the manifold \(M=G\times B\) admits \(G\)-invariant metrics with negative Ricci curvature, but no \(G\)-invariant Einstein metric.

MSC:

53C30 Differential geometry of homogeneous manifolds
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
14L24 Geometric invariant theory

References:

[1] Alekseevsky, D. V., Isometry groups of homogeneous quaternionic K\"{a}hler manifolds, J. Geom. Anal., 513-545 (1999) · Zbl 0973.53034 · doi:10.1007/BF02921971
[2] Atiyah, Michael, Essays on Topology and Related Topics (M\'{e}moires d\'{e}di\'{e}s \`a Georges de Rham). Spin-manifolds and group actions, 18-28 (1970), Springer, New York · Zbl 0192.31107
[3] Alekseevski\u{\i }, D. V., Structure of homogeneous Riemannian spaces with zero Ricci curvature, Funkcional. Anal. i Prilo\v{Z}en., 5-11 (1975)
[4] Arroyo, Romina M., Homogeneous Ricci solitons in low dimensions, Int. Math. Res. Not. IMRN, 4901-4932 (2015) · Zbl 1323.53042 · doi:10.1093/imrn/rnu088
[5] Arroyo, Romina M., The Alekseevskii conjecture in low dimensions, Math. Ann., 283-309 (2017) · Zbl 1361.53038 · doi:10.1007/s00208-016-1386-1
[6] Alekseevski\u{\i }, D. V., Compact quaternion spaces, Funkcional. Anal. i Prilo\v{z}en, 11-20 (1968) · Zbl 0175.19001
[7] Alekseevski\u{\i }, D. V., Homogeneous Riemannian spaces of negative curvature, Mat. Sb. (N.S.), 93-117, 168 (1975) · Zbl 0309.53037
[8] Alekseevski\u{\i }, D. V., Classification of quaternionic spaces with transitive solvable group of motions, Izv. Akad. Nauk SSSR Ser. Mat., 315-362, 472 (1975) · Zbl 0309.53045
[9] Alekseevsky, D., Einstein extensions of Riemannian manifolds, Trans. Amer. Math. Soc., 6059-6083 (2021) · Zbl 1477.53076 · doi:10.1090/tran/8259
[10] Anderson, Michael T., Dehn filling and Einstein metrics in higher dimensions, J. Differential Geom., 219-261 (2006) · Zbl 1100.53039
[11] Aubin, Thierry, \'{E}quations du type Monge-Amp\`ere sur les vari\'{e}t\'{e}s k\"{a}hl\'{e}riennes compactes, Bull. Sci. Math. (2), 63-95 (1978) · Zbl 0374.53022
[12] Bamler, Richard H., Construction of Einstein metrics by generalized Dehn filling, J. Eur. Math. Soc. (JEMS), 887-909 (2012) · Zbl 1250.53042 · doi:10.4171/JEMS/321
[13] B\'{e}rard-Bergery, Lionel, Sur la courbure des m\'{e}triques riemanniennes invariantes des groupes de Lie et des espaces homog\`enes, Ann. Sci. \'{E}cole Norm. Sup. (4), 543-576 (1978) · Zbl 0426.53038
[14] B\'{e}rard-Bergery, Lionel, Institut \'{E}lie Cartan, 6. Sur de nouvelles vari\'{e}t\'{e}s riemanniennes d’Einstein, Inst. \'{E}lie Cartan, 1-60 (1982), Univ. Nancy, Nancy · Zbl 0544.53038
[15] Buzano, Maria, Non-K\"{a}hler expanding Ricci solitons, Einstein metrics, and exotic cone structures, Pacific J. Math., 369-394 (2015) · Zbl 1316.53051 · doi:10.2140/pjm.2015.273.369
[16] Buzano, M., A family of steady Ricci solitons and Ricci flat metrics, Comm. Anal. Geom., 611-638 (2015) · Zbl 1326.53088 · doi:10.4310/CAG.2015.v23.n3.a5
[17] Berichon, Rohin, The Alekseevskii conjecture in 9 and 10 dimensions, Differential Geom. Appl., Paper No. 101782, 20 pp. (2021) · Zbl 1476.53077 · doi:10.1016/j.difgeo.2021.101782
[18] Besse, Arthur L., Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], xii+510 pp. (1987), Springer-Verlag, Berlin · Zbl 1147.53001 · doi:10.1007/978-3-540-74311-8
[19] Browder, William, \(G\)-actions and the fundamental group, Invent. Math., 411-424 (1981/82) · Zbl 0519.57034 · doi:10.1007/BF01396626
[20] B\"{o}hm, Christoph, Immortal homogeneous Ricci flows, Invent. Math., 461-529 (2018) · Zbl 1447.53078 · doi:10.1007/s00222-017-0771-z
[21] Differential geometry in the large, London Mathematical Society Lecture Note Series, xvi+384 pp. (2021), Cambridge University Press, Cambridge · Zbl 1503.53003 · doi:10.1017/9781108884136
[22] B\"{o}hm, Christoph, Homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds, Geom. Topol., 899-936 (2022) · Zbl 1500.53069 · doi:10.2140/gt.2022.26.899
[23] Berestycki, H., The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47-92 (1994) · Zbl 0806.35129 · doi:10.1002/cpa.3160470105
[24] B\"{o}hm, Christoph, Non-compact cohomogeneity one Einstein manifolds, Bull. Soc. Math. France, 135-177 (1999) · Zbl 0935.53021
[25] Armand Borel, On period maps of certain k(pi,1), Borel collected papers III, Springer-Verlag, Heidelberg, 2014, pp. 57-60.
[26] Bourbaki, N., \'{E}l\'{e}ments de math\'{e}matique. Fasc. XXVI. Groupes et alg\`ebres de Lie. Chapitre I: Alg\`ebres de Lie, Actualit\'{e}s Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1285, 146 pp. (1 foldout) pp. (1971), Hermann, Paris · Zbl 0213.04103
[27] Browder, Felix E., Families of linear operators depending upon a parameter, Amer. J. Math., 752-758 (1965) · Zbl 0149.10001 · doi:10.2307/2373072
[28] Calabi, E., Differential geometry. A construction of nonhomogeneous Einstein metrics, 17-24 (1973), Amer. Math. Soc., Providence, R.I. · Zbl 0309.53043
[29] Calabi, E., M\'{e}triques k\"{a}hl\'{e}riennes et fibr\'{e}s holomorphes, Ann. Sci. \'{E}cole Norm. Sup. (4), 269-294 (1979) · Zbl 0431.53056
[30] Cort\'{e}s, V., A class of cubic hypersurfaces and quaternionic K\"{a}hler manifolds of co-homogeneity one, Asian J. Math., 1-30 (2021) · Zbl 1482.53013 · doi:10.4310/AJM.2021.v25.n1.a1
[31] Clarke, Brian, The Riemannian \(L^2\) topology on the manifold of Riemannian metrics, Ann. Global Anal. Geom., 131-163 (2011) · Zbl 1213.58008 · doi:10.1007/s10455-010-9227-z
[32] Cort\'{e}s, Vicente, Alekseevskian spaces, Differential Geom. Appl., 129-168 (1996) · Zbl 0846.53030 · doi:10.1016/0926-2245(96)89146-7
[33] Calderbank, David M. J., Selfdual Einstein metrics with torus symmetry, J. Differential Geom., 485-521 (2002) · Zbl 1067.53034
[34] Leite, M. L., Metrics of negative Ricci curvature on \({\rm SL}(n,\,{\bf R}), n\geq 3\), J. Differential Geometry, 635-641 (1983) (1982) · Zbl 0482.53037
[35] Dotti Miatello, I., Negative Ricci curvature on complex simple Lie groups, Geom. Dedicata, 207-218 (1984) · Zbl 0549.53049 · doi:10.1007/BF00151509
[36] Dotti Miatello, Isabel, Transitive group actions and Ricci curvature properties, Michigan Math. J., 427-434 (1988) · Zbl 0677.53056 · doi:10.1307/mmj/1029003823
[37] Dorfmeister, Josef, The fundamental conjecture for homogeneous K\"{a}hler manifolds, Acta Math., 23-70 (1988) · Zbl 0662.32025 · doi:10.1007/BF02392294
[38] Dancer, Andrew, K\"{a}hler-Einstein metrics of cohomogeneity one, Math. Ann., 503-526 (1998) · Zbl 0965.53034 · doi:10.1007/s002080050233
[39] Dessai, Anand, Complete intersections with \(S^1\)-action, Transform. Groups, 295-320 (2017) · Zbl 1379.57040 · doi:10.1007/s00031-017-9418-9
[40] Evans, Lawrence C., Partial differential equations, Graduate Studies in Mathematics, xviii+662 pp. (1998), American Mathematical Society, Providence, RI · Zbl 0902.35002
[41] Eschenburg, J.-H., The initial value problem for cohomogeneity one Einstein metrics, J. Geom. Anal., 109-137 (2000) · Zbl 0992.53033 · doi:10.1007/BF02921808
[42] Fern\'{a}ndez-Culma, Edison Alberto, Classification of nilsoliton metrics in dimension seven, J. Geom. Phys., 164-179 (2014) · Zbl 1314.53082 · doi:10.1016/j.geomphys.2014.07.032
[43] Fine, Joel, Examples of compact Einstein four-manifolds with negative curvature, J. Amer. Math. Soc., 991-1038 (2020) · Zbl 1467.53055 · doi:10.1090/jams/944
[44] Gordon, Carolyn S., Einstein solvmanifolds have maximal symmetry, J. Differential Geom., 1-38 (2019) · Zbl 1415.53037 · doi:10.4310/jdg/1547607686
[45] Gilbarg, David, Elliptic partial differential equations of second order, Classics in Mathematics, xiv+517 pp. (2001), Springer-Verlag, Berlin · Zbl 1042.35002
[46] Gordon, Carolyn S., Isometry groups of Riemannian solvmanifolds, Trans. Amer. Math. Soc., 245-269 (1988) · Zbl 0664.53022 · doi:10.2307/2000761
[47] Grove, Karsten, Polar manifolds and actions, J. Fixed Point Theory Appl., 279-313 (2012) · Zbl 1266.53039 · doi:10.1007/s11784-012-0087-y
[48] Heber, Jens, Noncompact homogeneous Einstein spaces, Invent. Math., 279-352 (1998) · Zbl 0906.53032 · doi:10.1007/s002220050247
[49] Heintze, Ernst, On homogeneous manifolds of negative curvature, Math. Ann., 23-34 (1974) · Zbl 0273.53042 · doi:10.1007/BF01344139
[50] Heintze, Ernst, Integrable systems, geometry, and topology. Isoparametric submanifolds and a Chevalley-type restriction theorem, AMS/IP Stud. Adv. Math., 151-190 (2006), Amer. Math. Soc., Providence, RI · Zbl 1104.53052 · doi:10.1090/amsip/036/04
[51] He, Chenxu, Warped product Einstein metrics on homogeneous spaces and homogeneous Ricci solitons, J. Reine Angew. Math., 217-245 (2015) · Zbl 1328.53053 · doi:10.1515/crelle-2013-0078
[52] Heinzner, Peter, Stratifications with respect to actions of real reductive groups, Compos. Math., 163-185 (2008) · Zbl 1133.32009 · doi:10.1112/S0010437X07003259
[53] Jablonski, Michael, Homogeneous Ricci solitons, J. Reine Angew. Math., 159-182 (2015) · Zbl 1315.53046 · doi:10.1515/crelle-2013-0044
[54] Jablonski, Michael, Strongly solvable spaces, Duke Math. J., 361-402 (2015) · Zbl 1323.53049 · doi:10.1215/00127094-2861277
[55] Jensen, Gary R., Homogeneous Einstein spaces of dimension four, J. Differential Geometry, 309-349 (1969) · Zbl 0194.53203
[56] Jensen, Gary R., The scalar curvature of left-invariant Riemannian metrics, Indiana Univ. Math. J., 1125-1144 (1970/71) · Zbl 0219.53044 · doi:10.1512/iumj.1971.20.20104
[57] Jablonski, Michael, A step towards the Alekseevskii conjecture, Math. Ann., 197-212 (2017) · Zbl 1367.53041 · doi:10.1007/s00208-016-1429-7
[58] Kirwan, Frances Clare, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, i+211 pp. (1984), Princeton University Press, Princeton, NJ · Zbl 0553.14020 · doi:10.2307/j.ctv10vm2m8
[59] Kobayashi, Shoshichi, Foundations of differential geometry. Vol. I, Wiley Classics Library, xii+329 pp. (1996), John Wiley & Sons, Inc., New York
[60] Kobayashi, Shoshichi, Foundations of differential geometry. Vol. II, Wiley Classics Library, xvi+468 pp. (1996), John Wiley & Sons, Inc., New York
[61] Knapp, Anthony W., Lie groups beyond an introduction, Progress in Mathematics, xviii+812 pp. (2002), Birkh\"{a}user Boston, Inc., Boston, MA · Zbl 1075.22501
[62] Lauret, Jorge, Ricci soliton homogeneous nilmanifolds, Math. Ann., 715-733 (2001) · Zbl 0987.53019 · doi:10.1007/PL00004456
[63] Lauret, Jorge, Finding Einstein solvmanifolds by a variational method, Math. Z., 83-99 (2002) · Zbl 1015.53028 · doi:10.1007/s002090100407
[64] Lauret, Jorge, A canonical compatible metric for geometric structures on nilmanifolds, Ann. Global Anal. Geom., 107-138 (2006) · Zbl 1102.53021 · doi:10.1007/s10455-006-9015-y
[65] Lauret, Jorge, New developments in Lie theory and geometry. Einstein solvmanifolds and nilsolitons, Contemp. Math., 1-35 (2009), Amer. Math. Soc., Providence, RI · Zbl 1186.53058 · doi:10.1090/conm/491/09607
[66] Lauret, Jorge, Einstein solvmanifolds are standard, Ann. of Math. (2), 1859-1877 (2010) · Zbl 1220.53061 · doi:10.4007/annals.2010.172.1859
[67] Lauret, Jorge, Ricci soliton solvmanifolds, J. Reine Angew. Math., 1-21 (2011) · Zbl 1210.53051 · doi:10.1515/CRELLE.2011.001
[68] Lafuente, Ramiro, Structure of homogeneous Ricci solitons and the Alekseevskii conjecture, J. Differential Geom., 315-347 (2014) · Zbl 1321.53051
[69] Lohkamp, Joachim, Metrics of negative Ricci curvature, Ann. of Math. (2), 655-683 (1994) · Zbl 0824.53033 · doi:10.2307/2118620
[70] Lott, John, The collapsing geometry of almost Ricci-flat 4-manifolds, Comment. Math. Helv., 79-98 (2020) · Zbl 1453.53046 · doi:10.4171/cmh/481
[71] LeBrun, Claude, Strong rigidity of positive quaternion-K\"{a}hler manifolds, Invent. Math., 109-132 (1994) · Zbl 0815.53078 · doi:10.1007/BF01231528
[72] Lauret, Emilio A., Non-solvable Lie groups with negative Ricci curvature, Transform. Groups, 163-179 (2022) · Zbl 1527.22013 · doi:10.1007/s00031-020-09582-4
[73] Ness, Linda, A stratification of the null cone via the moment map, Amer. J. Math., 1281-1329 (1984) · Zbl 0604.14006 · doi:10.2307/2374395
[74] Ni, Lei, A Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators, Amer. Math. Monthly, 903-908 (2014) · Zbl 1319.35121 · doi:10.4169/amer.math.monthly.121.10.903
[75] Nikonorov, Yu. G., On the Ricci curvature of homogeneous metrics on noncompact homogeneous spaces, Siberian Math. J.. Sibirsk. Mat. Zh., 421-429, iv (2000) · Zbl 0947.53025 · doi:10.1007/BF02674604
[76] Nikonorov, Yu. G., Noncompact homogeneous Einstein 5-manifolds, Geom. Dedicata, 107-143 (2005) · Zbl 1081.53041 · doi:10.1007/s10711-005-0819-x
[77] Nikolayevsky, Y., Einstein solvmanifolds and the pre-Einstein derivation, Trans. Amer. Math. Soc., 3935-3958 (2011) · Zbl 1225.53049 · doi:10.1090/S0002-9947-2011-05045-2
[78] Naber, Aaron, Geometric structures of collapsing Riemannian manifolds II, J. Reine Angew. Math., 103-132 (2018) · Zbl 1403.53036 · doi:10.1515/crelle-2015-0082
[79] O’Neill, Barrett, Semi-Riemannian geometry, Pure and Applied Mathematics, xiii+468 pp. (1983), Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York · Zbl 0531.53051
[80] Palais, Richard S., On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2), 295-323 (1961) · Zbl 0103.01802 · doi:10.2307/1970335
[81] Petersen, Peter, Riemannian geometry, Graduate Texts in Mathematics, xviii+499 pp. (2016), Springer, Cham · Zbl 1417.53001 · doi:10.1007/978-3-319-26654-1
[82] Puppe, Volker, Prospects in topology. Simply connected \(6\)-dimensional manifolds with little symmetry and algebras with small tangent space, Ann. of Math. Stud., 283-302 (1994), Princeton Univ. Press, Princeton, NJ · Zbl 0929.57026
[83] Protter, Murray H., Maximum principles in differential equations, x+261 pp. (1984), Springer-Verlag, New York · Zbl 0549.35002 · doi:10.1007/978-1-4612-5282-5
[84] Rong, Xiaochun, A Bochner theorem and applications, Duke Math. J., 381-392 (1998) · Zbl 0962.53026 · doi:10.1215/S0012-7094-98-09116-5
[85] Taylor, Michael E., Partial differential equations I. Basic theory, Applied Mathematical Sciences, xxii+654 pp. (2011), Springer, New York · Zbl 1206.35002 · doi:10.1007/978-1-4419-7055-8
[86] Varadarajan, V. S., Lie groups, Lie algebras, and their representations, Graduate Texts in Mathematics, xiii+430 pp. (1984), Springer-Verlag, New York · Zbl 0955.22500 · doi:10.1007/978-1-4612-1126-6
[87] Will, Cynthia, Rank-one Einstein solvmanifolds of dimension 7, Differential Geom. Appl., 307-318 (2003) · Zbl 1045.53032 · doi:10.1016/S0926-2245(03)00037-8
[88] Will, Cynthia E., Negative Ricci curvature on some non-solvable Lie groups, Geom. Dedicata, 181-195 (2017) · Zbl 1360.53057 · doi:10.1007/s10711-016-0185-x
[89] Will, Cynthia, Negative Ricci curvature on some non-solvable Lie groups II, Math. Z., 1085-1105 (2020) · Zbl 1435.53042 · doi:10.1007/s00209-019-02310-z
[90] Wink, Matthias, Complete Ricci solitons via estimates on the soliton potential, Int. Math. Res. Not. IMRN, 4487-4521 (2021) · Zbl 1472.53104 · doi:10.1093/imrn/rnaa147
[91] Wolf, Joseph A., Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech., 1033-1047 (1965) · Zbl 0141.38202
[92] Wang, Jun, Einstein metrics on \(S^2\)-bundles, Math. Ann., 497-526 (1998) · Zbl 0898.53036 · doi:10.1007/s002080050158
[93] Yau, Shing Tung, Remarks on the group of isometries of a Riemannian manifold, Topology, 239-247 (1977) · Zbl 0372.53020 · doi:10.1016/0040-9383(77)90004-0
[94] Yau, Shing Tung, On the Ricci curvature of a compact K\"{a}hler manifold and the complex Monge-Amp\`ere equation. I, Comm. Pure Appl. Math., 339-411 (1978) · Zbl 0369.53059 · doi:10.1002/cpa.3160310304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.