×

The average number of normals through a point in a convex body and a related Euler-type identity. (English) Zbl 0793.52001

A normal to a convex body \(K\) at a point \(x\) in the boundary of \(K\) is a ray with end point at \(x\), perpendicular to a support plane \(H\) of \(K\) at \(x\), and contained in the halfspace bounded by \(H\) that contains \(K\). For each point \(p\) in \(K\) let \(n(K,p)\) be the number of normals to \(K\) passing through \(p\). Then the average number of normals through a point in \(K\) is defined by \[ n(K)={I(K)\over V(K)} \quad \text{where} \quad I(K)=\int_ K n(K,p)dV, \] \(V(K)\) denoting the volume of \(K\). The problem to find bounds for \(n(K)\) has been solved completely by G. D. Chakerian [‘The number of diameters through a point inside an oval’, Unión Matemática Argentina 29, 282-290 (1984)] by showing \(2\leq n(K)\leq 2\pi/(\pi-\sqrt 3)\) with equality holding in the upper bound only for the Reuleaux triangle and in the lower bound only for a circular disk.
In this paper bounds for more general cases are obtained. In the planar case the author shows for convex domains being bounded by a sufficiently smooth convex curve or by a polygon that \(n(K)\leq 12\) (in general), \(n(K)\leq 8\) (centrally symmetric), \(n(K)\leq 6\) (centers of curvature inside K). We have \(n(K)=8\) for regular \(2n\)-gons. In higher dimensions \(m\) she proves \(n(K)\leq{V(K+DK)\over V(K)}-1\) (sufficiently smooth or polytope) and \(n(K)\leq 3^ m-1\) (centrally symmetric in addition) where \(DK\) denotes the difference body of \(K\); \(n(K)=3^ m-1\) for the \(m\)- cube. Finally an Euler type relation is studied in general which emanated from the proof of the bound for polygons.

MSC:

52A10 Convex sets in \(2\) dimensions (including convex curves)
52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
52A38 Length, area, volume and convex sets (aspects of convex geometry)
Full Text: DOI

References:

[1] Apollonius (Heath), ?Apollonius of Perga, Treatise on Conic Sections. Edited in modern notation with introductions including an essay on the earlier history of the subject by T. L. Heath?, M.A. Cambridge, 1896. · JFM 27.0004.01
[2] Apollonius (Toomer), ?Apollonius, Conics, Books V to VII: The Arabic translation of the lost Greek original in the version of the Ban? M?sã. Edited with translation and commentary by G. J. Toomer?, Springer-Verlag, New York, 1990. · Zbl 0695.01020
[3] Bárány, I. and Zamfirescu, T., ?Diameters in typical convex bodies?,Canad. J. Math. XLII, No. 1 (1990), 50-61. · Zbl 0715.52002 · doi:10.4153/CJM-1990-003-8
[4] Besicovitch, A. S. and Zamfirescu, T., ?On pencils of diameters in convex bodies?,Rev. Roumaine Math. Pures Appl. 11 (1966), 637-639. · Zbl 0146.44202
[5] Blaschke, W., ?Einen Bemerkungen über Kurven und Flächen von konstanter Breite?,Ber. Verh. Sächs. Akad. Leipzig 67 (1915), 290-297. · JFM 45.0731.03
[6] Bonnesen, T. and Fenchel, W.,The Theory of Convex Bodies, translated by L. Boron, C. Christenson and B. Smith with the collaboration of W. Fenchel, BCS Associates, Moscow, Idaho, 1987. · Zbl 0628.52001
[7] Bose, R. C. and Roy, S. N., ?A note on the arc centroid of a closed convex oval,Bull. Calcutta Math. Soc. 27 (1935), 111-118. · Zbl 0014.41102
[8] Chakerian, G. D., ?The number of diameters through a point inside an oval?,Unión Matemática Argentina 29 (1984), 282-290.
[9] Chakerian, G. D. and Goodey, P. R., ?Inequalities involving convex sets and their chords?,Ann. Discrete Math. 20 (1984), 93-101. · Zbl 0557.52001
[10] Chakerian, G. D. and Stein, S. K., ?On the centroid of a homogeneous wire?,Michigan Math. J. 11 (1964), 189-192. · Zbl 0131.20201 · doi:10.1307/mmj/1028999092
[11] Debrunner, H., ?Zu einem massgeometrischen Satz über Körper konstanter Breite?,Math. Nach. 13 (1955), 165-167. · Zbl 0067.40202 · doi:10.1002/mana.19550130307
[12] Dinghas, A., ?Verallgemeinerung eines Blaschkeschen Satz über konvexe Körper konstanter Breite?,Rev. Math. Un. Interbalkanique 3 (1940), 17-20. · Zbl 0023.38004
[13] Douglas, V., Heil, E. and Lübbert, C., ?Geradenfamilien, Enveloppen und Evoluten?,J. Reine Angew. Math. 77 (1976), 370-383.
[14] Federer, H.,Geometric Measure Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1969. · Zbl 0176.00801
[15] Godbersen, C., ?Der Satz vom Vektorbereich in Räumen beliebiger Dimension?, Dissertation, Göttingen, 1938. · JFM 64.1346.02
[16] Groemer, H and Chakerian, G. D., ?Convex bodies of constant width?, inConvexity and its Applications (eds P. Gruber and J. Wills), Birkhäuser Verlag, Basel, Boston, Stuttgart, 1983, pp. 49-96. · Zbl 0518.52002
[17] Grünbaum, B., ?Measures of symmetry for convex sets?,Proc. Symp. in Pure Math., Amer. Math. Soc.VII (1963), 246-247. · Zbl 0142.20503
[18] Guggenheimer, H. H., ?Geometrical applications of integral calculus?,K.O. May, Lectures on Calculus, Holden-Day, San Francisco, 1967, p. 84.
[19] Hammer, P. C., ?Diameters of convex bodies?,Proc. Amer. Math. Soc. 5 (1954), 304-306. · Zbl 0057.38603 · doi:10.1090/S0002-9939-1954-0061398-1
[20] Hayashi, T., ?Some geometrical applications of the Fourier series?,Rend. Circ. Mat. Palermo 50 (1926), 96-102. · JFM 52.0771.02 · doi:10.1007/BF03014758
[21] Heil, E., ?Concurrent normals and critical points under weak smoothness assumptions?,Ann. New York Acad. Sci. 440 (1985), 170-178. · Zbl 0489.52013 · doi:10.1111/j.1749-6632.1985.tb14551.x
[22] Heil, E., ?Existenz eines 6-Normalenpunktes in einem konvexen Körper?,Arch. Math. 32 (1979), 412-416. · doi:10.1007/BF01238519
[23] Morgan, F.,Geometric Measure Theory: A Beginner’s Guide, Academic Press, New York, 1988. · Zbl 0671.49043
[24] Rogers, C. A. and Shephard, G. C., ?The difference body of a convex body?,Arch. Math. 8 (1957), 220-233. · Zbl 0082.15703 · doi:10.1007/BF01899997
[25] Santaló, L. A., ?Note on convex spherical curves?,Bull. Amer. Math. Soc. 50 (1944), 528-534. · Zbl 0061.38004 · doi:10.1090/S0002-9904-1944-08182-2
[26] Santaló, L. A., ?Sobre los cuerpos convexos de anchura constante inE n ?,Portugal Math. 5 (1946), 195-201.
[27] Schatteman, A. and Valette, G., ?On the normals of closed plane curves?,Simon Stevin 59, No. 2 (1985), 235-245. · Zbl 0579.53001
[28] Schneider, R., ?Boundary structure and curvature of convex bodies?,Contributions to Geometry, Proc. Geom. Symp. in Siegen (ed. J. Tolke and J. M. Wills), Birkhauser Verlag, Boston, 1979, pp. 13-59.
[29] Stanton, R. G. and Cowan, D. D. ?Note on a ?square? functional equation?,SIAM Rev. 12 (1970), 277-279. · Zbl 0206.29301 · doi:10.1137/1012049
[30] Tietze, H., Über die Anzahl der stabilen Ruhelagen eines Wu \(\ddot r\) fels’,Elem. Math. 3 (1948), 97-100.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.