×

Mathematics of gravitational lensing: Multiple imaging and magnification. (English) Zbl 1197.83006

Summary: The mathematical theory of gravitational lensing has revealed many generic and global properties. Beginning with multiple imaging, we review Morse-theoretic image counting formulas and lower bound results, and complex-algebraic upper bounds in the case of single and multiple lens planes. We discuss recent advances in the mathematics of stochastic lensing, discussing a general formula for the global expected number of minimum lensed images as well as asymptotic formulas for the probability densities of the microlensing random time delay functions, random lensing maps, and random shear, and an asymptotic expression for the global expected number of micro-minima. Multiple imaging in optical geometry and a spacetime setting are treated. We review global magnification relation results for model-dependent scenarios and cover recent developments on universal local magnification relations for higher order caustics.

MSC:

83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83C10 Equations of motion in general relativity and gravitational theory
85-02 Research exposition (monographs, survey articles) pertaining to astronomy and astrophysics
85A05 Galactic and stellar dynamics
37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
53Z05 Applications of differential geometry to physics

Software:

MultiPlane; GAUDI

References:

[1] Aazami A.B., Petters A.O.: A universal magnification theorem for higher-order caustic singularities. J. Math. Phys. 50, 032501 (2009) · Zbl 1202.58021 · doi:10.1063/1.3081055
[2] Aazami A.B., Petters A.O.: A universal magnification theorem II. Generic caustics up to codimension five. J. Math. Phys. 50, 082501 (2009) · Zbl 1223.58030 · doi:10.1063/1.3179163
[3] Aazami, A.B., Petters, A.O.: A universal magnification theorem III. Caustics beyond codimension five. J. Math. Phys. (2009), math-ph/0909.5235 (to appear) · Zbl 1223.58030
[4] Abramowicz M.A., Carter B., Lasota J.P.: Optical reference geometry for stationary and static dynamics. Gen. Relativ. Gravit. 20, 1173 (1988) · Zbl 0658.53072 · doi:10.1007/BF00758937
[5] Adler R., Taylor J.: Random Fields and Geometry. Wiley, London (1981)
[6] Arnold V.I.: Normal forms for functions near degenerate critical points, the Weyl groups of A k , D k , E k and Lagrangian singularities. Func. Anal. Appl. 6, 254 (1973) · Zbl 0278.57011 · doi:10.1007/BF01077644
[7] Arnold V.I.: Evolution of singularities of potential flows in collision-free media and the metamorphoses of caustics in three-dimensional space. J. Sov. Math. 32, 229 (1986) · Zbl 0583.58019 · doi:10.1007/BF01106069
[8] Arnold V.I., Gusein-Zade S.M., Varchenko A.N.: Singularities of Differentiable Maps, vol. 1. Birkhäuser, Boston (1985)
[9] Arnold V.I., Gusein-Zade S.M., Varchenko A.N.: Singularities of Differentiable Maps, vol. 2. Birkhäuser, Boston (1985)
[10] Atiyah M.F., Bott R.: A Lefschetz fixed point formula for elliptic complexes: I. Appl. Ann. Math. 86, 374 (1967) · Zbl 0161.43201
[11] Atiyah M.F., Bott R.: A Lefschetz fixed point formula for elliptic complexes: II. Appl. Ann. Math. 88, 451 (1968) · Zbl 0167.21703
[12] Azais J.M., Wschebor M.: On the distribution of the maximum of a Gaussian field with d parameters. Ann. Appl. Probab. 15(1A), 254 (2005) · Zbl 1079.60031 · doi:10.1214/105051604000000602
[13] Bayer J., Dyer C.C.: Maximal lensing: mass constraints on point lens configurations. Gen. Relativ. Gravit. 39, 1413 (2007) · Zbl 1163.83320 · doi:10.1007/s10714-007-0463-x
[14] Blandford R.D.: Gravitational lenses. Q. J. R. Astron. Soc. 31, 305 (1990)
[15] Blandford R., Narayan R.: Fermat’s principle, caustics, and the classification of gravitational lens images. Astrophys. J. 310, 568 (1986) · doi:10.1086/164709
[16] Burke W.: Multiple gravitational imaging by distributed masses. Astrophys. J. Lett. 244, L1 (1981) · doi:10.1086/183466
[17] Castrigiano D., Hayes S.: Catastrophe Theory. Addison-Wesley, Reading (2004) · Zbl 1059.58002
[18] Chiba M.: Probing dark matter substructure in lens galaxies. Astrophys. J. 565, 17 (2002) · doi:10.1086/324493
[19] Dalal N.: The magnification invariant of simple galaxy lens models. Astrophys. J. 509, 13 (1998) · doi:10.1086/311761
[20] Dalal N., Rabin J.M.: Magnification relations in gravitational lensing via multidimensional residue integrals. J. Math. Phys. 42, 1818 (2001) · Zbl 1009.83008 · doi:10.1063/1.1347394
[21] Ehlers J., Newman E.T.: The theory of caustics and wave front singularities with physical applications. J. Math. Phys. 41, 3344 (2000) · Zbl 0974.58037 · doi:10.1063/1.533316
[22] Evans N.W., Hunter C.: Lensing properties of cored galaxy models. Astrophys. J. 575, 68 (2002) · doi:10.1086/341214
[23] Evans N.W., Witt H.J.: Are there sextuplet and octuplet image systems?. Mon. Not. R. Astron. Soc. 327, 1260 (2001) · doi:10.1046/j.1365-8711.2001.04826.x
[24] Frankel T.: Gravitational Curvature: An Introduction to Einstein’s Theory. W. H. Freeman, San Francisco (1979) · Zbl 0427.53009
[25] Friedrich H., Stewart M.J.: Characteristic initial data and wavefront singularities in general relativity. Proc. R. Soc. Lond. A 385, 345 (1983) · Zbl 0513.58043 · doi:10.1098/rspa.1983.0018
[26] Forrester P.J., Honner G.: Exact statistical properties of the zeros of complex random polynomials. J. Phys. A Math. Gen. 32, 2961 (1999) · Zbl 0945.60050 · doi:10.1088/0305-4470/32/16/006
[27] Giannoni F., Lombardi M.: Gravitational lenses: odd or even images?. Class. Quantum Grav. 16, 1 (1999) · Zbl 1080.83550 · doi:10.1088/0264-9381/16/1/001
[28] Giannoni F., Masiello A., Piccione P.: A Morse theory for light rays on stably causal Lorentzian manifolds. Ann. Inst. H. Poincaré Phys. Theor. 69, 359 (1998) · Zbl 0920.58019
[29] Gibbons G.W.: No glory in cosmic string theory. Phys. Lett. B 308, 237 (1993) · doi:10.1016/0370-2693(93)91278-U
[30] Gibbons G.W., Herdeiro C.A.R., Warnick C., Werner M.C.: Stationary metrics and optical Zermelo–Randers–Finsler geometry. Phys. Rev. D 79, 044022 (2009) · doi:10.1103/PhysRevD.79.044022
[31] Gibbons G.W., Warnick C.M.: Universal properties of the near-horizon optical geometry. Phys. Rev. D 79, 064031 (2009) · doi:10.1103/PhysRevD.79.064031
[32] Gibbons G.W., Werner M.C.: Applications of the Gauss–Bonnet theorem to gravitational lensing. Class. Quantum Grav. 25, 235009 (2008) · Zbl 1155.83007 · doi:10.1088/0264-9381/25/23/235009
[33] Gilmore R.: Catastrophe Theory for Scientists and Engineers. Dover, New York (1981) · Zbl 0497.58001
[34] Golubitsky M., Guillemin V.: Stable Mappings and Their Singularities. Springer, Berlin (1973) · Zbl 0294.58004
[35] Gottlieb D.H.: A gravitational lens need not produce an odd number of images. J. Math. Phys. 35, 5507 (1994) · Zbl 0820.53071 · doi:10.1063/1.530762
[36] Granot J., Schechter P.L., Wambsganss J.: The mean number of extra microimage pairs for macrolensed quasars. Astrophys. J. 583, 575 (2003) · doi:10.1086/345447
[37] Griffiths P., Harris J.: Principles of Algebraic Geometry. Wiley, New York (1994) · Zbl 0836.14001
[38] Hunter C., Evans N.W.: Lensing properties of scale-free galaxies. Astrophys. J. 554, 1227 (2001) · doi:10.1086/321407
[39] Katz N., Balbus S., Paczyński B.: Random scattering approach to gravitational microlensing. Astrophys. J. 306, 2 (1986) · doi:10.1086/164313
[40] Keeton, C.R.: Gravitational lensing with stochastic substructure: Effects of the clump mass function and spatial distribution. http://xxx.lanl.gov/abs/0908.3001 (2009)
[41] Keeton C., Gaudi S., Petters A.O.: Identifying lenses with small-scale structure. I. Cusp lenses. Astrophys. J. 598, 138 (2003) · doi:10.1086/378934
[42] Keeton C., Gaudi S., Petters A.O.: Identifying lenses with small-scale structure. II. Fold lenses. Astrophys. J. 635, 35 (2005) · doi:10.1086/497324
[43] Khavinson D., Neumann G.: On the number of zeros of certain rational harmonic functions. Proc. Am. Math. Soc. 134, 1077 (2006) · Zbl 1090.30008 · doi:10.1090/S0002-9939-05-08058-5
[44] Kovner I.: Fermat principle in arbitrary gravitational fields. Astrophys. J. 351, 114 (1990) · doi:10.1086/168450
[45] Li W.V., Wei A.: On the expected number of zeros of random harmonic polynomials. Proc. AMS 137, 195 (2009) · Zbl 1157.60031 · doi:10.1090/S0002-9939-08-09555-5
[46] Low R.: Stable singularities of wave-fronts in general relativity. J. Math. Phys. 39, 3332 (1998) · Zbl 1001.83006 · doi:10.1063/1.532257
[47] Majthay A.: Foundations of Catastrophe Theory. Pitman, Boston (1985) · Zbl 0661.58003
[48] Mao S., Petters A.O., Witt H.: Properties of point masses on a regular polygon and the problem of maximum number of images. In: Piran, T. (eds) Proceedings of the Eighth Marcel Grossman Meeting on General Relativity, World Scientific, Singapore (1997)
[49] Mao S., Schneider P.: Evidence for substructure in lens galaxies?. Mon. Not. R. Astron. Soc. 295, 587 (1998) · doi:10.1046/j.1365-8711.1998.01319.x
[50] McKenzie R.H.: A gravitational lens produces an odd number of images. J. Math. Phys. 26, 1592 (1985) · Zbl 0569.53043 · doi:10.1063/1.526923
[51] Metcalf R.B., Madau P.: Compound gravitational lensing as a probe of dark matter substructure within galaxy halos. Astrophys. J. 563, 9 (2001) · doi:10.1086/323695
[52] Milnor J.: Dynamics in One Complex Variable. Princeton University Press, Princeton (2006) · Zbl 1085.30002
[53] Narasimha D., Subramanian K.: ’Missing image’ in gravitational lens systems?. Nature 310, 112 (1986)
[54] Nityananda R., Ostriker J.P.: Gravitational lensing by stars in a galaxy halo–theory of combined weak and strong scattering. J. Astrophys. Astron. 5, 235 (1984) · doi:10.1007/BF02714541
[55] Orban de Xivry, G., Marshall, P.: An atlas of predicted exotic gravitational lenses. astro-ph/0904.1454 (2009)
[56] Padmanabhan T., Subramanian K.: The focusing equation, caustics and the condition for multiple imaging by thick gravitational lenses. Mon. Not. R. Astron. Soc. 233, 265 (1988)
[57] Perlick V.: On Fermat’s principle in general relativity: I. The general case. Class. Quantum Grav. 7, 1319 (1990) · Zbl 0707.53054 · doi:10.1088/0264-9381/7/8/011
[58] Perlick V.: On Fermat’s principle in general relativity: II. The conformally stationary case. Class. Quantum Grav. 7, 1849 (1990) · Zbl 0707.53055 · doi:10.1088/0264-9381/7/10/016
[59] Perlick V.: Infinite dimensional Morse theory and Fermat’s principle in general relativity I. J. Math. Phys. 36, 6915 (1995) · Zbl 0854.58014 · doi:10.1063/1.531198
[60] Perlick V.: Criteria for multiple imaging in Lorentzian manifolds. Class. Quantum Grav. 13, 529 (1996) · Zbl 0852.53048 · doi:10.1088/0264-9381/13/3/016
[61] Perlick V.: Global properties of gravitational lens maps in a Lorentzian manifold setting. Commun. Math. Phys. 220, 403 (2001) · Zbl 0995.58008 · doi:10.1007/s002200100450
[62] Perlick V.: Ray Optics, Fermat’s Principle, and Applications to General Relativity. Springer, Berlin (2000) · Zbl 0964.83002
[63] Petters, A.O.: Singularities in gravitational microlensing. Ph.D. Thesis, MIT, Department of Mathematics (1991)
[64] Petters A.O.: Morse theory and gravitational microlensing. J. Math. Phys. 33, 1915 (1992) · doi:10.1063/1.529667
[65] Petters A.O.: Multiplane gravitational lensing. I. Morse theory and image counting. J. Math. Phys. 36, 4263 (1995) · Zbl 0854.57027 · doi:10.1063/1.530961
[66] Petters A.O.: Arnold’s singularity theory and gravitational lensing. J. Math. Phys. 33, 3555 (1993) · Zbl 0784.58054 · doi:10.1063/1.530045
[67] Petters A.O.: Multiplane gravitational lensing III: upper bound on number of images. J. Math. Phys. 38, 1605 (1997) · Zbl 0876.57047 · doi:10.1063/1.531818
[68] Petters A.O., Levine H., Wambsganss J.: Singularitiy Theory and Gravitational Lensing. Birkäuser, Boston (2001) · Zbl 0979.83001
[69] Petters A.O., Rider B., Teguia A.M.: A mathematical theory of stochastic microlensing I. Random time delay functions and lensing maps. J. Math. Phys. 50, 072503 (2009) · doi:10.1063/1.3158854
[70] Petters, A.O., Rider, B., Teguia, A.M.: A mathematical theory of stochastic microlensing II. Random images, shear, and the Kac-Rice formula, to appear in J. Math. Phys. (2009), astro-ph/0807.4984v2 · Zbl 1372.85006
[71] Petters A.O., Wicklin F.W.: Fixed points due to gravitational lenses. J. Math. Phys. 39, 1011 (1998) · Zbl 0920.58078 · doi:10.1063/1.532367
[72] Poston T., Stewart I.: Catastrophe Theory and its Applications. Dover, New York (1978) · Zbl 0382.58006
[73] Rhie S.H.: Infimum microlensing amplification of the maximum number of images of n-point lens systems. Astrophys. J. 484, 67 (1997) · doi:10.1086/304336
[74] Rhie, S.H.: n-point gravitational lenses with 5(n) images. astro-ph/0305166 (2003)
[75] Renn J., Sauer T., Stachel J.: The origin of gravitational lensing: a postscipt to Einstein’s 1936 Science Paper. Science 275, 184 (1997) · Zbl 1226.83003 · doi:10.1126/science.275.5297.184
[76] Schechter P.L., Wambsganss J.: Quasar microlensing at high magnification and the role of dark matter: enhanced fluctuations and suppressed saddle points. Astrophys. J. 580, 685 (2002) · doi:10.1086/343856
[77] Schneider P., Ehlers J., Falco E.E.: Gravitational Lenses. Springer, Berlin (1992)
[78] Schneider P., Weiss A.: The two-point mass lens: detailed investigation of a special asymmetric gravitational lens. Astron. Astrophys. 164, 237 (1986)
[79] Schneider P., Weiss A.: The gravitational lens equation near cusps. Astron. Astrophys. 260, 1 (1992)
[80] Shin E.M., Evans N.W.: The Milky Way Galaxy as a strong gravitational lens. Mon. Not. R. Astron. Soc. 374, 1427 (2007) · doi:10.1111/j.1365-2966.2006.11256.x
[81] Shub M., Smale S.: Complexity of Bezout’s theorem. II. Volumes and Probabilities, Computational Algebraic Geometry, Nice (1992), Progress in Mathematics, vol. 109. Birkhäuser, Boston (1993) · Zbl 0851.65031
[82] Sodin M., Tsirelson B.: Random complex zeroes, I. Asymptotic normality. Israel J. Math. 144, 125 (2004) · Zbl 1072.60043 · doi:10.1007/BF02984409
[83] Sodin M., Tsirelson B.: Random complex zeroes, II. Perturbed lattice. Israel J. Math. 152, 105 (2006) · Zbl 1125.60033 · doi:10.1007/BF02771978
[84] Sodin M., Tsirelson B.: Random complex zeroes, III. Decay of the hole probability. Israel J. Math. 147, 371 (2005) · Zbl 1130.60308 · doi:10.1007/BF02785373
[85] Subramanian K., Cowling S.: On local conditions for multiple imaging by bounded, smooth gravitational lenses. Mon. Not. R. Astron. Soc. 219, 333 (1986)
[86] Wambsganss J., Witt H.J., Schneider P.: Gravitational microlensing - powerful combination of ray-shooting and parametric representation of caustics. Astron. Astrophys. 258, 591 (1992)
[87] Werner M.C.: A Lefschetz fixed point theorem in gravitational lensing. J. Math. Phys. 48, 052501 (2007) · Zbl 1144.81424 · doi:10.1063/1.2735443
[88] Werner M.C.: Geometry of universal magnification invariants. J. Math. Phys. 50, 082504 (2009) · Zbl 1223.58033 · doi:10.1063/1.3204970
[89] Witt H.: Investigation of high amplification events in light curves of gravitationally lensed quasars. Astron. Astrophys. 236, 311 (1990)
[90] Witt H.J., Mao S.: On the minimum magnification between caustic crossings for microlensing by binary and multiple Stars. Astrophys. J. Lett. 447, 105 (1995) · doi:10.1086/309566
[91] Witt H.J., Mao S.: On the magnification relations in quadruple lenses: a moment approach. Mon. Not. R. Astron. Soc. 311, 689 (2000) · doi:10.1046/j.1365-8711.2000.03122.x
[92] Zakharov A.: On the magnification of gravitational lens images near cusps. Astron. Astrophys. 293, 1 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.