×

Trihyperkähler reduction and instanton bundles on \(\mathbb{CP}^{3}\). (English) Zbl 1396.14012

Summary: A trisymplectic structure on a complex \(2n\)-manifold is a three-dimensional space \(\Omega\) of closed holomorphic forms such that any element of \(\Omega\) has constant rank \(2n\), \(n\) or zero, and degenerate forms in \(\Omega\) belong to a non-degenerate quadric hypersurface. We show that a trisymplectic manifold is equipped with a holomorphic 3-web and the Chern connection of this 3-web is holomorphic, torsion-free, and preserves the three symplectic forms. We construct a trisymplectic structure on the moduli of regular rational curves in the twistor space of a hyper-Kähler manifold, and define a trisymplectic reduction of a trisymplectic manifold, which is a complexified form of a hyper-Kähler reduction. We prove that the trisymplectic reduction in the space of regular rational curves on the twistor space of a hyper-Kähler manifold \(M\) is compatible with the hyper-Kähler reduction on \(M\). As an application of these geometric ideas, we consider the ADHM construction of instantons and show that the moduli space of rank \(r\), charge \(c\) framed instanton bundles on \(\mathbb{CP}^3\) is a smooth trisymplectic manifold of complex dimension \(4rc\). In particular, it follows that the moduli space of rank two, charge \(c\) instanton bundles on \(\mathbb{C}\mathbb{P}^{3}\) is a smooth complex manifold dimension \(8c-3\), thus settling part of a 30-year-old conjecture.

MSC:

14C21 Pencils, nets, webs in algebraic geometry
14D20 Algebraic moduli problems, moduli of vector bundles
53A60 Differential geometry of webs
53C26 Hyper-Kähler and quaternionic Kähler geometry, “special” geometry
53C28 Twistor methods in differential geometry

References:

[1] doi:10.1007/s00220-005-1472-9 · Zbl 1105.53037 · doi:10.1007/s00220-005-1472-9
[2] doi:10.1016/0375-9601(78)90141-X · Zbl 0424.14004 · doi:10.1016/0375-9601(78)90141-X
[3] doi:10.1007/BF01450706 · Zbl 0438.14015 · doi:10.1007/BF01450706
[4] doi:10.1007/BF02104116 · Zbl 0734.53025 · doi:10.1007/BF02104116
[5] doi:10.1007/s000290050033 · Zbl 0917.53006 · doi:10.1007/s000290050033
[7] doi:10.1016/j.aim.2011.03.012 · Zbl 1260.14016 · doi:10.1016/j.aim.2011.03.012
[8] doi:10.1016/j.crma.2008.02.014 · Zbl 1143.14036 · doi:10.1016/j.crma.2008.02.014
[12] doi:10.1070/IM2012v076n05ABEH002613 · Zbl 1262.14053 · doi:10.1070/IM2012v076n05ABEH002613
[13] doi:10.1007/BF01393378 · Zbl 0486.53048 · doi:10.1007/BF01393378
[16] doi:10.1007/BF01214418 · Zbl 0612.53043 · doi:10.1007/BF01214418
[18] doi:10.1017/S0017089510000558 · Zbl 1238.14010 · doi:10.1017/S0017089510000558
[19] doi:10.1142/S0129167X03001624 · Zbl 1059.14018 · doi:10.1142/S0129167X03001624
[20] doi:10.1007/BF01420250 · Zbl 0411.14002 · doi:10.1007/BF01420250
[21] doi:10.1007/978-3-540-74311-8 · doi:10.1007/978-3-540-74311-8
[22] doi:10.2307/1970257 · Zbl 0108.07804 · doi:10.2307/1970257
[24] doi:10.1016/j.jalgebra.2008.01.016 · Zbl 1145.14017 · doi:10.1016/j.jalgebra.2008.01.016
[25] doi:10.1007/BF01450348 · Zbl 0477.14014 · doi:10.1007/BF01450348
[27] doi:10.1007/BF01450561 · Zbl 0438.14009 · doi:10.1007/BF01450561
[28] doi:10.1007/BF01360864 · Zbl 0332.32021 · doi:10.1007/BF01360864
[29] doi:10.1007/BF01212289 · Zbl 0581.14008 · doi:10.1007/BF01212289
[30] doi:10.1090/S0002-9947-1957-0086359-5 · doi:10.1090/S0002-9947-1957-0086359-5
[31] doi:10.4171/051-1/3 · doi:10.4171/051-1/3
[32] doi:10.1023/A:1004176617816 · Zbl 1034.53081 · doi:10.1023/A:1004176617816
[33] doi:10.1007/978-3-642-57916-5 · Zbl 0797.14004 · doi:10.1007/978-3-642-57916-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.