×

A computational framework for crack propagation along contact interfaces and surfaces under load. (English) Zbl 1539.74416

Summary: We present the first implicit computational framework for simulating crack propagation along contact interfaces and surfaces under load in three-dimensional bodies, which is distinct from modelling the contact interaction associated with crack closure. We restrict ourselves to brittle fracture and frictionless contact and focus on numerical challenges associated with the coupling of unilateral constraints emerging from the Griffith’s criterion and the contact conditions. The formulation is based on the configurational mechanics framework and is solved using the finite element method. The approach utilises a monolithic Arbitrary Lagrangian-Eulerian formulation permitting simultaneous resolution of crack propagation and unilateral contact constraints. Contact is embedded in the model using the well-known mortar contact formulation. Evolving cracks are explicitly modelled as displacement discontinuities within the mesh. Heterogeneous approximation of arbitrary order is used to discretise spatial displacements, enabling \(hp\)-adaptive refinement around the crack front and the contact interfaces traversed by the crack. The result is a holistic approach which handles issues associated with thermodynamic consistency, numerical accuracy and robustness of the computational scheme. Several numerical examples are presented to verify the model formulation and implementation; they also highlight how contact pressure and load applied on surfaces traversed by cracks influence their propagation. The robustness of the approach is validated by comparison of our simulations with existing numerical results and an industrial experiment involving cracks of complex morphologies propagating along contact interfaces between multiple deformable bodies.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74Rxx Fracture and damage

Software:

YADE; MoFEM; PETSc

References:

[1] Miehe, C.; Dal, H.; Schänzel, L.-M.; Raina, A., A phase-field model for chemo-mechanical induced fracture in lithium-ion battery electrode particles, Internat. J. Numer. Methods Engrg., 106, 683-711 (2016) · Zbl 1352.74116
[2] Kaczmarczyk, Ł.; Nezhad, M. M.; Pearce, C., Three-dimensional brittle fracture: configurational-force-driven crack propagation, Internat. J. Numer. Methods Engrg., 97, 531-550 (2014) · Zbl 1352.74284
[3] Kaczmarczyk, Ł.; Ullah, Z.; Pearce, C. J., Energy consistent framework for continuously evolving 3d crack propagation, Comput. Methods Appl. Mech. Engrg., 324, 54-73 (2017) · Zbl 1439.74354
[4] Rabczuk, T., Computational methods for fracture in brittle and quasi-brittle solids: state-of-the-art review and future perspectives, Int. Sch. Res. Notices, 2013 (2013) · Zbl 1298.74002
[5] Song, J.-H.; Belytschko, T., Cracking node method for dynamic fracture with finite elements, Internat. J. Numer. Methods Engrg., 77, 360-385 (2009) · Zbl 1155.74415
[6] Strouboulis, T.; Copps, K.; Babusǩa, I., The generalized finite element method: an example of its implementation and illustration of its performance, Internat. J. Numer. Methods Engrg., 47, 1401-1417 (2000) · Zbl 0955.65080
[7] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 131-150 (1999) · Zbl 0955.74066
[8] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Internat. J. Numer. Methods Engrg., 45, 601-620 (1999) · Zbl 0943.74061
[9] Babusǩa, I.; Melenk, J. M., The partition of unity method, Internat. J. Numer. Methods Engrg., 40, 727-758 (1997) · Zbl 0949.65117
[10] Mosler, J.; Meschke, G., 3D modelling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulations, Internat. J. Numer. Methods Engrg., 57, 1553-1576 (2003) · Zbl 1062.74623
[11] Thompson, D. C.; Pebay, P. P., Embarrassingly parallel mesh refinement by edge subdivision, Eng. Comput., 22, 75-93 (2006)
[12] Wells, G. N.; Sluys, L., A new method for modelling cohesive cracks using finite elements, Internat. J. Numer. Methods Engrg., 50, 2667-2682 (2001) · Zbl 1013.74074
[13] Bazǎnt, Z. P.; Oh, B. H., Crack band theory for fracture of concrete, Matér. Constr., 16, 155-177 (1983)
[14] Grassl, P.; Jirásek, M., Damage-plastic model for concrete failure, Int. J. Solids Struct., 43, 7166-7196 (2006) · Zbl 1120.74777
[15] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations, Internat. J. Numer. Methods Engrg., 83, 1273-1311 (2010) · Zbl 1202.74014
[16] Peerlings, R. H.; de Borst, R.; Brekelmans, W. M.; de Vree, J., Gradient enhanced damage for quasi-brittle materials, Internat. J. Numer. Methods Engrg., 39, 3391-3403 (1996) · Zbl 0882.73057
[17] de Borst, R.; Pamin, J.; Geers, M. G., On coupled gradient-dependent plasticity and damage theories with a view to localization analysis, Eur. J. Mech. A Solids, 18, 939-962 (1999) · Zbl 0968.74007
[18] de Borst, R.; Verhoosel, C. V., Gradient damage vs phase-field approaches for fracture: Similarities and differences, Comput. Methods Appl. Mech. Engrg., 312, 78-94 (2016) · Zbl 1439.74347
[19] Azevedo, N. M.; Lemos, J., Hybrid discrete element/finite element method for fracture analysis, Comput. Methods Appl. Mech. Engrg., 195, 4579-4593 (2006) · Zbl 1123.74049
[20] Kozicki, J.; Donze, F. V., A new open-source software developed for numerical simulations using discrete modeling methods, Comput. Methods Appl. Mech. Engrg., 197, 4429-4443 (2008) · Zbl 1194.74002
[21] Grassl, P.; Jirásek, M., Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension, Int. J. Solids Struct., 47, 957-968 (2010) · Zbl 1193.74119
[22] Bolander, J.; Saito, S., Fracture analyses using spring networks with random geometry, Eng. Fract. Mech., 61, 569-591 (1998)
[23] Ha, Y. D.; Bobaru, F., Characteristics of dynamic brittle fracture captured with peridynamics, Eng. Fract. Mech., 78, 1156-1168 (2011)
[24] Eshelby, J. D., The force on an elastic singularity, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci., 244, 87-112 (1951) · Zbl 0043.44102
[25] Eshelby, J. D., Energy relations and the energy-momentum tensor in continuum mechanics, (The Energy Momentum Tensor in Continuum Mechanics, Inelastic Behavior of Solids (1970)), 77-115
[26] Maugin, G. A.; Trimarco, C., Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture, Acta Mech., 94, 1-28 (1992) · Zbl 0780.73014
[27] Gurtin, M. E.; Podio-Guidugli, P., Configurational forces and the basic laws for crack propagation, J. Mech. Phys. Solids, 44, 905-927 (1996) · Zbl 1054.74508
[28] Steinmann, P.; Ackermann, D.; Barth, F., Application of material forces to hyperelastostatic fracture mechanics. II. computational setting, Int. J. Solids Struct., 38, 5509-5526 (2001) · Zbl 1066.74508
[29] Miehe, C.; Gur̈ses, E.; Birkle, M., A computational framework of configurational-force-driven brittle fracture based on incremental energy minimization, Int. J. Fract., 145, 245-259 (2007) · Zbl 1198.74008
[30] Gur̈ses, E.; Miehe, C., A computational framework of three-dimensional configurational-force-driven brittle crack propagation, Comput. Methods Appl. Mech. Engrg., 198, 1413-1428 (2009) · Zbl 1227.74070
[31] Bird, R.; Coombs, W.; Giani, S., A quasi-static discontinuous galerkin configurational force crack propagation method for brittle materials: discontinuous Galerkin configurational force crack propagation, Internat. J. Numer. Methods Engrg., 113, 1061-1080 (2018) · Zbl 07874742
[32] Bird, R.; Coombs, W. M.; Giani, S., Adaptive configurational force-based propagation for brittle and fatigue crack analysis, Internat. J. Numer. Methods Engrg., 123, 1673-1709 (2022) · Zbl 1534.74059
[33] Khisamitov, I.; Meschke, G., Configurational-force interface model for brittle fracture propagation, Comput. Methods Appl. Mech. Engrg., 351, 351-378 (2019) · Zbl 1441.74207
[34] Farrokhnia, A.; Jivkov, A. P.; Hall, G.; Mummery, P., Large-scale modeling of damage and failure of nuclear graphite moderated reactor, J. Press. Vessel Technol., 144 (2022)
[35] Yastrebov, V. A., Numerical Methods in Contact Mechanics (2013), John Wiley & Sons · Zbl 1268.74003
[36] Alart, P.; Curnier, A., A mixed formulation for frictional contact problems prone to Newton like solution methods, Comput. Methods Appl. Mech. Engrg., 92, 353-375 (1991) · Zbl 0825.76353
[37] Huëber, S.; Wohlmuth, B., A primal-dual active set strategy for non-linear multibody contact problems, Comput. Methods Appl. Mech. Engrg., 194, 3147-3166 (2005) · Zbl 1093.74056
[38] Puso, M.; Laursen, T., A mortar segment-to-segment contact method for large deformation solid mechanics, Comput. Methods Appl. Mech. Engrg., 193, 601-629 (2004) · Zbl 1060.74636
[39] Popp, A.; Gitterle, M.; Gee, M.; Wall, W., A dual mortar approach for 3d finite deformation contact with consistent linearization, Internat. J. Numer. Methods Engrg., 83, 1428-1465 (2010) · Zbl 1202.74183
[40] Poluektov, M.; Figiel, L., A cut finite-element method for fracture and contact problems in large-deformation solid mechanics, Comput. Methods Appl. Mech. Engrg., 388, Article 114234 pp. (2022) · Zbl 1507.74505
[41] Stefansson, I.; Berre, I.; Keilegavlen, E., A fully coupled numerical model of thermo-hydro-mechanical processes and fracture contact mechanics in porous media, Comput. Methods Appl. Mech. Engrg., 386, Article 114122 pp. (2021) · Zbl 1507.74137
[42] Nejati, M.; Paluszny, A.; Zimmerman, R. W., A finite element framework for modeling internal frictional contact in three-dimensional fractured media using unstructured tetrahedral meshes, Comput. Methods Appl. Mech. Engrg., 306, 123-150 (2016) · Zbl 1436.74072
[43] Fang, H.; Zhang, D.; Zhou, M.; Fang, Q.; Wen, M., A contact algorithm for cohesive cracks in the extended finite element method, Internat. J. Numer. Methods Engrg., 121, 2747-2766 (2020) · Zbl 07841940
[44] Khoei, A. R.; Bahmani, B., Application of an enriched FEM technique in thermo-mechanical contact problems, Comput. Mech., 62, 1127-1154 (2018) · Zbl 1464.74184
[45] Rodríguez-Tembleque, L.; García-Sánchez, F.; Sáez, A., Crack-face frictional contact modelling in cracked piezoelectric materials, Comput. Mech., 64, 1655-1667 (2019) · Zbl 1468.74044
[46] Hirmand, M. R.; Vahab, M.; Papoulia, K. D.; Khalili, N., Energy minimization versus criteria-based methods in discrete cohesive fracture simulations, Comput. Mech., 68, 845-860 (2021) · Zbl 1478.74073
[47] Fei, F.; Choo, J., A phase-field method for modeling cracks with frictional contact, Internat. J. Numer. Methods Engrg., 121, 740-762 (2020) · Zbl 07843220
[48] Zhang, P.; Du, C.; Zhao, W.; Sun, L., Dynamic crack face contact and propagation simulation based on the scaled boundary finite element method, Comput. Methods Appl. Mech. Engrg., 385, Article 114044 pp. (2021) · Zbl 1502.74100
[49] Pundir, M.; Anciaux, G., Coupling between cohesive element method and node-to-segment contact algorithm: Implementation and application, Internat. J. Numer. Methods Engrg., 122, 4333-4353 (2021) · Zbl 07865401
[50] Cheng, H.; Zhou, X., New technique for frictional contact on crack slip in the extended finite-element method framework, J. Eng. Mech., 144, Article 04018059 pp. (2018)
[51] Liu, F.; Borja, R. I., A contact algorithm for frictional crack propagation with the extended finite element method, Internat. J. Numer. Methods Engrg., 76, 1489-1512 (2008) · Zbl 1195.74186
[52] Dolbow, J.; Moë, N.; Belytschko, T., An extended finite element method for modeling crack growth with frictional contact, Comput. Methods Appl. Mech. Engrg., 190, 6825-6846 (2001) · Zbl 1033.74042
[53] Cheng, H.; Zhou, X., Numerical simulation of the dynamic frictional contact problem for crack slip based on the multidimensional space method, J. Eng. Mech., 145, Article 04018128 pp. (2019)
[54] Dang-Trung, H.; Keilegavlen, E.; Berre, I., Numerical modeling of wing crack propagation accounting for fracture contact mechanics, Int. J. Solids Struct., 204-205, 233-247 (2020)
[55] Giner, E.; Tur, M.; Tarancón, J. E.; Fuenmayor, F. J., Crack face contact in x-fem using a segment-to-segment approach, Internat. J. Numer. Methods Engrg., 82, 1424-1449 (2010) · Zbl 1188.74057
[56] Giner, E.; Tur, M.; Vercher, A.; Fuenmayor, F., Numerical modelling of crack-contact interaction in 2d incomplete fretting contacts using x-fem, Tribol. Int., 42, 1269-1275 (2009)
[57] Meray, F.; Chaise, T.; Gravouil, A.; Depouhon, P.; Descharrieres, B.; Nélias, D., A novel sam/x-fem coupling approach for the simulation of 3d fatigue crack growth under rolling contact loading, Finite Elem. Anal. Des., 206, Article 103752 pp. (2022)
[58] Hu, T.; Guilleminot, J.; Dolbow, J. E., A phase-field model of fracture with frictionless contact and random fracture properties: Application to thin-film fracture and soil desiccation, Comput. Methods Appl. Mech. Engrg., 368, Article 113106 pp. (2020) · Zbl 1506.74354
[59] de Pannemaecker, A.; Fouvry, S.; Buffiere, J.; Brochu, M., Modelling the fretting fatigue crack growth: From short crack correction strategies to microstructural approaches, Int. J. Fatigue, 117, 75-89 (2018)
[60] Mai, S.; Gravouil, A.; Nguyen-Tajan, M.; Trollé, B., Numerical simulation of rolling contact fatigue crack growth in rails with the rail bending and the frictional contact, Eng. Fract. Mech., 174, 196-206 (2017)
[61] Ribeaucourt, R.; Baietto-Dubourg, M.-C.; Gravouil, A., A new fatigue frictional contact crack propagation model with the coupled x-fem/latin method, Comput. Methods Appl. Mech. Engrg., 196, 3230-3247 (2007) · Zbl 1173.74385
[62] Daves, W.; Kráčík, M.; Scheriau, S., Analysis of crack growth under rolling-sliding contact, Int. J. Fatigue, 121, 63-72 (2019)
[63] Farjoo, M.; Daniel, W.; Meehan, P. A., Modelling a squat form crack on a rail laid on an elastic foundation, Eng. Fract. Mech., 85, 47-58 (2012)
[64] Carter, B.; Schenck, E.; Wawrzynek, P.; Ingraffea, A.; Barlow, K., Three-dimensional simulation of fretting crack nucleation and growth, Eng. Fract. Mech., 96, 447-460 (2012)
[65] Anjum, Z.; Qayyum, F.; Khushnood, S.; Ahmed, S.; Shah, M., Prediction of non-propagating fretting fatigue cracks in ti6al4v sheet tested under pin-in-dovetail configuration: Experimentation and numerical simulation, Mater. Des., 87, 750-758 (2015)
[66] Hu, C.; Wei, D.; Wang, Y.; Shi, L., Experimental and numerical study of fretting fatigue in dovetail assembly using a total life prediction model, Eng. Fract. Mech., 205, 301-318 (2019)
[67] Homel, M. A.; Herbold, E. B., Field-gradient partitioning for fracture and frictional contact in the material point method, Internat. J. Numer. Methods Engrg., 109, 1013-1044 (2017) · Zbl 07874333
[68] Kakouris, E. G.; Triantafyllou, S. P., Phase-field material point method for dynamic brittle fracture with isotropic and anisotropic surface energy, Comput. Methods Appl. Mech. Engrg., 357 (2019) · Zbl 1442.74206
[69] Hesch, C.; Franke, M.; Dittmann, M.; Tamizer, I., Hierarchical nurbs and a higher-order phase-field approach to fracture for finite-deformation contact problems, Comput. Methods Appl. Mech. Engrg., 301, 242-258 (2016) · Zbl 1425.74341
[70] Kruger̈, M.; Dittmann, M.; Aldakheel, F.; Hartel̈, A.; Wriggers, P.; Hesch, C., Porous-ductile fracture in thermo-elasto-plastic solids with contact applications, Comput. Mech., 65, 941-966 (2020) · Zbl 1462.74143
[71] Dittmann, M.; Kruger̈, M.; Schmidt, F.; Schuß, S.; Hesch, C., Variational modeling of thermomechanical fracture and anisotropic frictional mortar contact problems with adhesion, Comput. Mech., 63, 571-591 (2019) · Zbl 1469.74097
[72] Lewandowski, K.; Kaczmarczyk, L.; Athanasiadis, I.; Marshall, J. F.; Pearce, C. J., A computational framework for crack propagation in spatially heterogeneous materials, Phil. Trans. R. Soc. A, 379, Article 20200291 pp. (2021)
[73] Marsden, J. E.; Hughes, T. J.R., Mathematical Foundations of Elasticity (1994), Dover
[74] Holzapfel, G. A., Nonlinear Solid Mechanics: A Continuum Approach for Engineering (2000), Wiley · Zbl 0980.74001
[75] Lazar, M.; Kirchner, H. O., The eshelby stress tensor, angular momentum tensor and dilatation flux in gradient elasticity, Int. J. Solids Struct., 44, 2477-2486 (2007) · Zbl 1121.74008
[76] Brunig̈, M., Eshelby stress tensor in large strain anisotropic damage mechanics, Int. J. Mech. Sci., 46, 1763-1782 (2004) · Zbl 1192.74338
[77] Rice, J. R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35, 379-386 (1968)
[78] Popp, A.; Gee, M.; Wall, W., A finite deformation mortar contact formulation using a primal-dual active set strategy, Internat. J. Numer. Methods Engrg., 79, 1354-1391 (2009) · Zbl 1176.74133
[79] Heegaard, J.; Curnier, A., An augmented lagrangian method for discrete large-slip contact problems, Internat. J. Numer. Methods Engrg., 36, 569-593 (1993) · Zbl 0769.73078
[80] Ainsworth, M.; Coyle, J., Hierarchic finite element bases on unstructured tetrahedral meshes, Internat. J. Numer. Methods Engrg., 58, 2103-2130 (2003) · Zbl 1042.65088
[81] Joshaghani, M.; Joodat, S.; Nakshatrala, K., A stabilized mixed discontinuous Galerkin formulation for double porosity/permeability model, Comput. Methods Appl. Mech. Engrg., 352, 508-560 (2019) · Zbl 1441.76062
[82] Sevilla, R.; Giacomini, M.; Karkoulias, A.; Huerta, A., A superconvergent hybridisable discontinuous galerkin method for linear elasticity: A superconvergent hybridisable discontinuous Galerkin method for linear elasticity, Internat. J. Numer. Methods Engrg., 116, 91-116 (2018) · Zbl 07865052
[83] Calo, V. M.; Ern, A.; Muga, I.; Rojas, S., An adaptive stabilized conforming finite element method via residual minimization on dual discontinuous Galerkin norms, Comput. Methods Appl. Mech. Engrg., 363, Article 112891 pp. (2020) · Zbl 1436.65173
[84] Muñoz-Matute, J.; Pardo, D.; Demkowicz, L., A DPG-based time-marching scheme for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 373, Article 113539 pp. (2021) · Zbl 1506.76094
[85] Vaziri Astaneh, A.; Fuentes, F.; Mora, J.; Demkowicz, L., High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations, Comput. Methods Appl. Mech. Engrg., 332, 686-711 (2018) · Zbl 1440.65233
[86] Wriggers, P.; Zavarise, G., A formulation for frictionless contact problems using a weak form introduced by Nitsche, Comput. Mech., 41, 407-420 (2008) · Zbl 1162.74419
[87] Seitz, A.; Wall, W. A.; Popp, A., Nitsche’s method for finite deformation thermomechanical contact problems, Comput. Mech., 63, 1091-1110 (2019) · Zbl 1469.74106
[88] Hiermeier, M.; Wall, W. A.; Popp, A., A truly variationally consistent and symmetric mortar-based contact formulation for finite deformation solid mechanics, Comput. Methods Appl. Mech. Engrg., 342, 532-560 (2018) · Zbl 1440.74246
[89] Popp, A.; Seitz, A.; Gee, M.; Wall, W., Improved robustness and consistency of 3d contact algorithms based on a dual mortar approach, Comput. Methods Appl. Mech. Engrg., 264, 67-80 (2013) · Zbl 1286.74106
[90] Farah, P.; Popp, A.; Wall, W., Segment-based vs. element-based integration for mortar methods in computational contact mechanics, Comput. Mech., 55, 209-228 (2015) · Zbl 1311.74120
[91] Kaczmarczyk, Ł.; Ullah, Z.; Lewandowski, K.; Meng, X.; Zhou, X.-Y.; Athanasiadis, I.; Nguyen, H.; Chalons-Mouriesse, C.-A.; Richardson, E.; Miur, E.; Shvarts, A.; Wakeni, M.; Pearce, C., MoFEM: an open source, parallel finite element library, J. Open Source Softw. (2020), URL: https://joss.theoj.org/papers/10.21105/joss.01441, http://mofem.eng.gla.ac.uk
[92] Balay, S.; Abhyankar, S.; Adams, M. F.; Benson, S.; Brown, J.; Brune, P.; Buschelman, K.; Constantinescu, E. M.; Dalcin, L.; Dener, A.; Eijkhout, V.; Gropp, W. D.; Hapla, V.; Isaac, T.; Jolivet, P.; Karpeev, D.; Kaushik, D.; Knepley, M. G.; Kong, F.; Kruger, S.; May, D. A.; McInnes, L. C.; Mills, R. T.; Mitchell, L.; Munson, T.; Roman, J. E.; Rupp, K.; Sanan, P.; Sarich, J.; Smith, B. F.; Zampini, S.; Zhang, H.; Zhang, H.; Zhang, J., PETSc web page (2022), URL: https://petsc.org/
[93] Tautges, T. J.; Ernst, C.; Stimpson, C.; Meyers, R. J.; Merkley, K., Moab : a mesh-oriented database (2004)
[94] Athanasiadis, I.; Shvarts, A. G.; Kaczmarczyk, L.; Ullah, Z.; Lewandowski, K.; Pearce, C. J., Supplementary material (2023)
[95] Puso, M. A.; Laursen, T.; Solberg, J., A segment-to-segment mortar contact method for quadratic elements and large deformations, Comput. Methods Appl. Mech. Engrg., 197, 555-566 (2008) · Zbl 1169.74627
[96] Johnson, K. L., Contact Mechanics (1987), Cambridge University Press · Zbl 0599.73108
[97] Temizer, I., A mixed formulation of mortar-based frictionless contact, Comput. Methods Appl. Mech. Engrg., 223, 173-185 (2012) · Zbl 1253.74066
[98] Tada, H.; Paris, P. C.; Irwin, G. R., The Stress Analysis of Cracks, Handbook, Vol. 34 (1973), Del Research Corporation
[99] Ainsworth, M., Essential boundary conditions and multi-point constraints in finite element analysis, Comput. Methods Appl. Mech. Engrg., 190, 6323-6339 (2001) · Zbl 0992.65128
[100] Nejati, M.; Paluszny, A.; Zimmerman, R. W., On the use of quarter-point tetrahedral finite elements in linear elastic fracture mechanics, Eng. Fract. Mech., 144, 194-221 (2015)
[101] Henshell, R. D.; Shaw, K. G., Crack tip finite elements are unnecessary, Internat. J. Numer. Methods Engrg., 9, 495-507 (1975) · Zbl 0306.73064
[102] Barsoum, R. S., On the use of isoparametric finite elements in linear fracture mechanics, Internat. J. Numer. Methods Engrg., 10, 25-37 (1976) · Zbl 0321.73067
[103] Athanasiadis, I.; Shvarts, A. G.; Kaczmarczyk, Łukasz; Lewandowski, K.; Ullah, Z.; Pearce, C., Corrigendum to “Energy consistent framework for continuously evolving 3D crack propagation”, Comput. Methods Appl. Mech. Engrg., 324, 54-73 (2017), Geneva, Switzerland: Zenodo. (2022) · Zbl 1439.74354
[104] Hutchinson, P., HYB/TOR Seal Ring and Fuel Brick Groove Wall Crack Opening TestsTechnical Report 207204-01/TR/0001 Issue 2 (2019), Wood Nuclear Ltd: Wood Nuclear Ltd Walton House, Birchwood Park, Warrington
[105] Bonet, J.; Wood, R. D., Nonlinear Continuum Mechanics for Finite Element Analysis (2008), Cambridge University Press · Zbl 1142.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.