×

Turbulent flow over a liquid layer revisited: multi-equation turbulence modelling. (English) Zbl 1241.76384

Summary: The mechanisms by which turbulent shear flow causes waves on a gas-liquid interface are studied analytically, with a critical assessment of the possible role played by wave-induced Reynolds stresses (WIRSs). First, turbulent flow past a corrugated surface of a small slope is analysed; the surface can either be stationary or support a travelling wave. This problem serves as a useful model because direct numerical simulation (DNS) and experimental data are available to test the analysis, and because this picture is itself a model for the fully coupled two-layer problem. It is demonstrated that the WIRSs play no significant role in shear-driven turbulent flow past a moving wavy wall, and that they alter the structure of the flow only in a quantitative fashion in the pressure-driven case. In the shear-driven case in particular, excellent agreement is obtained with previously reported DNS results. Two closure assumptions are made in our model: the first concerns the wave-induced dissipation of turbulent kinetic energy; the second concerns the importance of rapid distortion. The results of our calculations are sensitive to the assumptions used to close the wave-induced dissipation but are insensitive to the details of the rapid-distortion modelling. Finally, the fully coupled two-layer problem is addressed in the setting of waves of small amplitude, where it is demonstrated that the WIRSs do not play a significant role in the growth of interfacial waves, even at relatively high Reynolds numbers. Again, good agreement is obtained between data from experiments and DNS.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76F10 Shear flows and turbulence

References:

[1] DOI: 10.1615/MultScienTechn.v19.i1.10 · doi:10.1615/MultScienTechn.v19.i1.10
[2] DOI: 10.1017/S0022112001003639 · Zbl 1029.76027 · doi:10.1017/S0022112001003639
[3] DOI: 10.1017/S0022112059000568 · Zbl 0093.19106 · doi:10.1017/S0022112059000568
[4] Hewitt, Annular Two-Phase Flows (1970)
[5] DOI: 10.1146/annurev.fluid.30.1.507 · Zbl 1398.86006 · doi:10.1146/annurev.fluid.30.1.507
[6] Hanratty, Waves on Fluid Interfaces pp 221– (1983) · doi:10.1016/B978-0-12-493220-3.50015-5
[7] DOI: 10.1017/S0022112077000524 · doi:10.1017/S0022112077000524
[8] DOI: 10.1017/S0022112093003350 · Zbl 0787.76032 · doi:10.1017/S0022112093003350
[9] DOI: 10.1017/S0022112003004154 · Zbl 1119.76343 · doi:10.1017/S0022112003004154
[10] Zeisel, J. Fluid Mech. 597 pp 343– (2007)
[11] DOI: 10.1017/S0022112094001710 · Zbl 0843.76017 · doi:10.1017/S0022112094001710
[12] DOI: 10.1017/S0022112092001393 · Zbl 0746.76011 · doi:10.1017/S0022112092001393
[13] DOI: 10.1017/S0022112008005648 · Zbl 1171.76365 · doi:10.1017/S0022112008005648
[14] Acheson, Elementary Fluid Dyanmics (1990)
[15] Drazin, Hydrodynamic Stability (1981)
[16] DOI: 10.1017/S0022112067000357 · Zbl 0144.47102 · doi:10.1017/S0022112067000357
[17] DOI: 10.1017/S0022112085001045 · doi:10.1017/S0022112085001045
[18] DOI: 10.1017/S0022112066001289 · Zbl 0158.45005 · doi:10.1017/S0022112066001289
[19] DOI: 10.1063/1.866933 · Zbl 0657.76043 · doi:10.1063/1.866933
[20] Abramowitz, Handbook of Mathematical Functions (1965)
[21] DOI: 10.1002/aic.690110129 · doi:10.1002/aic.690110129
[22] DOI: 10.1017/S0022112010001230 · Zbl 1197.76055 · doi:10.1017/S0022112010001230
[23] DOI: 10.1017/S0022112099004383 · Zbl 0949.76036 · doi:10.1017/S0022112099004383
[24] DOI: 10.1017/S002211201000618X · Zbl 1225.76044 · doi:10.1017/S002211201000618X
[25] DOI: 10.1016/S0301-9322(96)90005-1 · Zbl 1135.76365 · doi:10.1016/S0301-9322(96)90005-1
[26] DOI: 10.1017/S0022112080000092 · Zbl 0427.76053 · doi:10.1017/S0022112080000092
[27] DOI: 10.1017/S0022112072002101 · Zbl 0243.76034 · doi:10.1017/S0022112072002101
[28] DOI: 10.1016/0009-2509(78)80020-7 · doi:10.1016/0009-2509(78)80020-7
[29] DOI: 10.1017/S0022112099006965 · Zbl 0987.76044 · doi:10.1017/S0022112099006965
[30] Pope, Turbulent Flows (2000) · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[31] DOI: 10.1029/JC087iC03p01961 · doi:10.1029/JC087iC03p01961
[32] DOI: 10.1063/1.869798 · doi:10.1063/1.869798
[33] DOI: 10.1016/j.ijmultiphaseflow.2011.02.010 · doi:10.1016/j.ijmultiphaseflow.2011.02.010
[34] DOI: 10.1016/j.jnnfm.2010.02.005 · Zbl 1274.76223 · doi:10.1016/j.jnnfm.2010.02.005
[35] DOI: 10.1017/S0022112062000828 · Zbl 0106.41101 · doi:10.1017/S0022112062000828
[36] DOI: 10.1017/S0022112059000830 · Zbl 0092.44102 · doi:10.1017/S0022112059000830
[37] DOI: 10.1017/S0022112057000567 · Zbl 0078.40705 · doi:10.1017/S0022112057000567
[38] DOI: 10.1017/S0022112095003855 · Zbl 0849.76020 · doi:10.1017/S0022112095003855
[39] DOI: 10.1017/S0022112000008624 · Zbl 0956.76035 · doi:10.1017/S0022112000008624
[40] DOI: 10.1017/S0022112096007124 · doi:10.1017/S0022112096007124
[41] DOI: 10.1063/1.868937 · Zbl 1087.76053 · doi:10.1063/1.868937
[42] DOI: 10.1017/S0022112008004060 · Zbl 1160.76023 · doi:10.1017/S0022112008004060
[43] DOI: 10.1017/S0022112075001814 · Zbl 0301.76030 · doi:10.1017/S0022112075001814
[44] DOI: 10.1006/jcph.1996.5571 · Zbl 0878.76054 · doi:10.1006/jcph.1996.5571
[45] DOI: 10.1016/0301-9322(95)00015-P · Zbl 1135.76471 · doi:10.1016/0301-9322(95)00015-P
[46] DOI: 10.1063/1.2409736 · Zbl 1146.76440 · doi:10.1063/1.2409736
[47] DOI: 10.1017/CBO9780511525018 · doi:10.1017/CBO9780511525018
[48] DOI: 10.1038/nature01382 · doi:10.1038/nature01382
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.