×

A constitutive model for non-Newtonian materials based on the persistence-of-straining tensor. (English) Zbl 1271.76017

From the summary: We present a constitutive equation for non-Newtonian materials which is capable of predicting, independently, steady state rheological material functions both in shear and in extension. The basic assumption is that the extra-stress tensor is a function of both the rate-of-strain tensor, \(\mathbf D\), and the persistence-of-straining tensor, \(\mathbf P=\mathbf D\overline{\mathbf W}-\overline{\mathbf W}\mathbf D\). The resulting equation falls within the category of constitutive equations of the form \(\boldsymbol \tau=\boldsymbol \tau(\mathbf D,\overline{\mathbf W})\), with the advantage of eliminating the undesirable stress jumps that may occur when \(\overline {\mathbf W}\) becomes locally undetermined. We also show that this formulation is not restricted to motions with constant relative principle stretch history (MWCRPSH), in contrast to what is suggested in the literature. The same basis of tensors that comes from representation theorems also arises from an elastic constitutive equation based on the difference between the Jauman and the Harnoy convected time derivatives, in the limit of small values of the Deborah number.

MSC:

76A05 Non-Newtonian fluids
Full Text: DOI

References:

[1] Astarita G (1967) Two dimensionless groups relevant in the analysis of steady flows of viscoelastic materials. Ind Eng Chem Fund 6:257 · doi:10.1021/i160022a014
[2] Astarita G (1979) Objective and generally applicable criteria for flow classification. J Non-Newton Fluid Mech 6:69-76 · doi:10.1016/0377-0257(79)87004-4
[3] Astarita G (1991) Quasi-Newtonian constitutive equations exhibiting flow-type sensitivity. J Rheology 35:687-689 · doi:10.1122/1.550185
[4] Astarita G, Marrucci G (1972) Elliptical flows of elastic liquids. Meccanica 7(1):65-69 · doi:10.1007/BF02128884
[5] Astarita G, Marrucci G (1974) Principles of non-Newtonian fluid mechanics. McGraw-Hill, Maidenhead · Zbl 0316.73001
[6] Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1, 2nd edn. Wiley, New York,
[7] Bovet E, Chiaia B, Preziosi L (2009) A new model for snow avalanche dynamics based on non-Newtonian fluids. Meccanica 46:1-13 · Zbl 1258.74007
[8] Brunn P, Ryssel E (1997) The w−D fluid: general theory with special emphasis on stationary two dimensional flows. Contin Mech Thermodyn 9:73-82 · Zbl 0879.76004 · doi:10.1007/s001610050056
[9] Buresti G (2009) Notes on the role of viscosity, vorticity and dissipation notes on the role of viscosity, vorticity and dissipation in incompressible flows. Meccanica 44:469-487 · Zbl 1241.76116 · doi:10.1007/s11012-009-9216-0
[10] Coronado OM, Arora D, Behr M, Pasquali M (2006) Four-field Galerkin/least-squares formulation for viscoelastic fluids. J Non-Newton Fluid Mech 140:132-144 · Zbl 1143.76323 · doi:10.1016/j.jnnfm.2006.03.016
[11] de Souza Mendes P, Dutra E, Siffert J, Naccache M (2007) Gas displacement of viscoplastic liquids in capillary tubes. J Non-Newton Fluid Mech 145:30-40 · Zbl 1195.76080 · doi:10.1016/j.jnnfm.2006.10.002
[12] Harnoy A (1976) Stress relaxation effect in elastico-viscous lubricants in gears and rollers. J Fluid Mech 76(3):501-517 · Zbl 0358.76003 · doi:10.1017/S0022112076000761
[13] Huilgol RR, Phan-Thien N (1997) Fluid mechanics of viscoelasticity. Rheology series, vol 6. Elsevier, Amsterdam · Zbl 0573.76012
[14] Joseph DD, Renardy M, Saut JC (1985) Hyperbolicity and change of type in the flow of viscoelastic fluids. Arch Ration Mech Anal 87(3):213-251 · Zbl 0572.76011 · doi:10.1007/BF00250725
[15] Keunings R (1986) On the high Weissenberg number problem. J Non-Newton Fluid Mech 20:209-226 · Zbl 0589.76021 · doi:10.1016/0377-0257(86)80022-2
[16] Larson RG (1988) Constitutive equations for polymer melts ans solutions. Chemical engineering series. Butterworths, Stoneham
[17] Mackay ME, Astarita G (1997) Analysis of entry flow to determine elongational flow properties. J Non-Newton Fluid Mech 70:219-235 · doi:10.1016/S0377-0257(96)01540-6
[18] Marrucci G, Astarita G (1967) Significance of the Deborah number in steady flows. Meccanica 2(3):141-143 · doi:10.1007/BF02128167
[19] Meissner J (1984) Polymer melt rheology—a challenge for the polymer scientist and engineer. Pure Appl Chem 56:369-384 · doi:10.1351/pac198456030369
[20] Oldroyd JG (1950) On the formulation of rheological equations of state. Proc R Soc Lond Ser A 200:523-541 · Zbl 1157.76305 · doi:10.1098/rspa.1950.0035
[21] Schunk PR, Scriven LE (1990) Constitutive equation for modeling mixed extension and shear in polymer solution processing. J Rheology 34(7):1085-1117 · doi:10.1122/1.550075
[22] Smith GF (1971) On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int J Eng Sci 9:899-916 · Zbl 0233.15021 · doi:10.1016/0020-7225(71)90023-1
[23] Soares EJ, de Souza Mendes PR, Carvalho MS (2006) Gas-displacement of non-Newtonian liquids in capillary tubes. Int J Heat Fluid Flow 27(1):95-104 · doi:10.1016/j.ijheatfluidflow.2005.06.001
[24] Sousa DA, Soares EJ, Queiroz R, Thompson R (2007) Numerical investigation on gas-displacement of a shear-thinning liquid and a visco-plastic material in capillary tubes. J Non-Newton Fluid Mech 144:149-159 · Zbl 1196.76019 · doi:10.1016/j.jnnfm.2007.03.006
[25] Souza Mendes PR, Padmanabhan M, Scriven LE, Macosko CW (1995) Inelastic constitutive equations for complex flows. Rheol Acta 34:209-214 · doi:10.1007/BF00398440
[26] Tanner RI, Huilgol RR (1975) On a classification scheme for flow fields. Rheol Acta 14:959-962 · Zbl 0324.76003 · doi:10.1007/BF01516297
[27] Thompson RL (2001) Performance of a new constitutive equation for non-Newtonian liquids. PhD thesis, Pontifícia Universidade Católica RJ, Rio de Janeiro, Brazil (in Portuguese)
[28] Thompson RL (2008) Some perspectives on the dynamic history of a material element. Int J Eng Sci 46(3):224-249 · Zbl 1213.74147 · doi:10.1016/j.ijengsci.2007.10.005
[29] Thompson RL (2010) Flow classification for viscoelastic materials. Int J Adv Eng Sci Appl Math. doi:10.1007/s12572-010-0003-x · doi:10.1007/s12572-010-0003-x
[30] Thompson RL, de Souza Mendes PR (2005) Persistence of straining and flow classification. Int J Eng Sci 43(1-2):79-105 · Zbl 1211.76013 · doi:10.1016/j.ijengsci.2004.07.011
[31] Thompson RL, de Souza Mendes PR (2005) Considerations on kinematic flow classification criteria J Non-Newton Fluid Mech 128:109-115 · Zbl 1195.76061 · doi:10.1016/j.jnnfm.2005.04.002
[32] Thompson RL, de Souza Mendes PR (2007) Further remarks on persistence-of-straining and flow classification. Int J Eng Sci 45(2-8):504-508 · Zbl 1213.76021 · doi:10.1016/j.ijengsci.2007.03.008
[33] Thompson RL, de Souza Mendes PR (2008) Comments on “Objective flow classification parameters and their use in general steady flows” by PO Brunn. Rheol Acta 47(9):959-961 · doi:10.1007/s00397-008-0310-3
[34] Thompson RL, de Souza Mendes PR, Naccache MF (1999) A new constitutive equation and its performance in contraction flows. J Non-Newton Fluid Mech 86:375-388 · Zbl 0965.76008 · doi:10.1016/S0377-0257(99)00005-1
[35] Tong D, Shan L (2009) Exact solutions for generalized burger’s fluid in an annular pipe. Meccanica 44:427-431 · Zbl 1197.76015 · doi:10.1007/s11012-008-9179-6
[36] Vanarsdale WE (2003) Objective spin and the Rivlin-Ericksen model. Acta Mech 162:111-124 · Zbl 1064.74010 · doi:10.1007/s00707-002-0996-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.