×

Epidemic spreading on metapopulation networks including migration and demographics. (English) Zbl 1396.92083

Summary: Epidemic dynamics in a structured population has been widely investigated in recent years by utilizing the metapopulation framework with a reaction-diffusion approach. In this paper, we study epidemic spreading on metapopulation networks, including migration and demographics, wherein population dynamics in each node (a patch) follows the logistic model with a heterogeneous carrying capacity. The epidemic threshold is theoretically calculated at a mean-field level and is then evaluated by Monte Carlo simulations. It is shown that heterogeneity of carrying capacity drastically decreases the threshold, and conversely increasing the migration rate slightly increases the threshold. Interestingly, we observe Monte Carlo simulations showing the effect of heterogeneity of carrying capacity and migration on the epidemic prevalence above the epidemic threshold. Heterogeneity of carrying capacity enhances epidemic spreading in the initial stage, but has no impact on the final infection density. The migration rate has a pronounced impact on both temporal spreading behaviour and endemic state.{
©2018 American Institute of Physics}

MSC:

92D30 Epidemiology
91D30 Social networks; opinion dynamics

References:

[1] Anderson, R. M.; May, R. M., Infectious diseases of humans, (1991), Oxford University: Oxford University, Oxford
[2] Newman, M. E. J., Spread of epidemic disease on networks, Phys. Rev. E, 64, 016128, (2002) · doi:10.1103/PhysRevE.66.016128
[3] Pastor-Satorras, R.; Vespignani, A., Epidemic dynamics and endemic states in complex networks, Phys. Rev. E, 63, 066117, (2001) · doi:10.1103/PhysRevE.63.066117
[4] Miller, J. C.; Slim, A. C.; Volz, E. M., Edge-based compartmental modelling for infectious disease spread, J. R. Soc. Interface, 9, 890-906, (2012) · doi:10.1098/rsif.2011.0403
[5] Liindquist, J.; Ma, J.; van den Driessche, P.; Willeboordse, F. H., Effective degree network disease models, J. Math. Biol., 62, 143-164, (2011) · Zbl 1232.92066 · doi:10.1007/s00285-010-0331-2
[6] Gong, Y. W.; Song, Y. R.; Jiang, G. P., Epidemic spreading in scale-free networks including the effect of individual vigilance, Chin. Phys. B, 21, 1, 010205, (2012) · doi:10.1088/1674-1056/21/1/010205
[7] Colizza, V.; Pastor-Satorras, R.; Vespignani, A., Reaction-diffusion processes and metapopulation models in heterogeneous networks, Nat. Phys., 3, 276-282, (2007) · doi:10.1038/nphys560
[8] Colizza, V.; Vespignani, A., Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations, J. Theor. Biol., 251, 450-467, (2008) · Zbl 1398.92233 · doi:10.1016/j.jtbi.2007.11.028
[9] Murray, J. D., Mathematical Biology, (2005), Springer Verlag: Springer Verlag, Berlin
[10] Gong, Y. W.; Song, Y. R.; Jiang, G. P., Time-varying human mobility patterns with metapopulation epidemic dynamics, Phys. A, 392, 4242-4251, (2013) · Zbl 1395.92148 · doi:10.1016/j.physa.2013.05.028
[11] Meloni, S.; Perra, N.; Arenas, A.; Gómez, S.; Moreno, Y.; Vespignani, A., Modeling human mobility responses to the large-scale spreading of infectious diseases, Sci. Rep., 1, 62, (2011) · doi:10.1038/srep00062
[12] North, A. R.; Godfray, H. C. J., The dynamics of disease in a metapopulation: The role of dispersal range, J. Theor. Biol., 418, 57-65, (2017) · doi:10.1016/j.jtbi.2017.01.037
[13] Lund, H.; Lizana, L.; Simonsen, I., Effects of city-size heterogeneity on epidemic spreading in a metapopulation, J. Stat. Phys., 151, 367-382, (2013) · Zbl 1329.92137 · doi:10.1007/s10955-013-0690-3
[14] Mata, A. S.; Ferreira, S. C.; Pastor-Satorras, R., Effects of local population structure in a reaction-diffusion model of a contact process on metapopulation networks, Phys. Rev. E, 88, 042820, (2013) · doi:10.1103/PhysRevE.88.042820
[15] Ruan, Z.; Tang, M.; Gu, C.; Xu, J., Epidemic spreading between two coupled subpopulations with inner structures, Chaos, 27, 103104, (2017) · doi:10.1063/1.4990592
[16] Apolloni, A.; Poletto, C.; Ramasco, J. J.; Jensen, P.; Colizza, V., Metapopulation epidemic models with heterogeneous mixing and travel behaviour, Theor. Biol. Med. Modell., 11, 3, (2014) · doi:10.1186/1742-4682-11-3
[17] Gong, Y. W.; Song, Y. R.; Jiang, G. P., Epidemic spreading in metapopulation networks with heterogeneous infection rates, Phys. A, 416, 208-218, (2014) · Zbl 1395.92149 · doi:10.1016/j.physa.2014.08.056
[18] Saldaña, J., Continuous-time formulation of reaction-diffusion processes on heterogeneous metapopulations, Phys. Rev. E, 78, 012902, (2008) · doi:10.1103/PhysRevE.78.012902
[19] Juher, D.; Ripoll, J.; Saldaña, J., Analysis and Monte Carlo simulations of a model for the spread of infectious diseases in heterogeneous metapopulations, Phys. Rev. E, 80, 041920, (2009) · doi:10.1103/PhysRevE.80.041920
[20] Wang, B.; Han, Y.; Tanaka, G., Interplay between epidemic spread and information propagation on metapopulation networks, J. Theor. Biol., 420, 18-25, (2017) · Zbl 1370.92170 · doi:10.1016/j.jtbi.2017.02.020
[21] Busenberg, S. N.; van den Driessche, P., Analysis of a disease transmission model in a population with varying size, J. Theor. Biol., 28, 257-270, (1990) · Zbl 0725.92021
[22] Ball, F.; Mollison, D.; Scalia-Tomba, G., Epidemics with two levels of mixing, Ann. Appl. Probab., 7, 46-89, (1997) · Zbl 0909.92028 · doi:10.1214/aoap/1034625252
[23] Mena-Lorca, J.; Hethcote, H. W., Dynamic models of infectious diseases as regulators of population sizes, J. Theor. Biol., 30, 693-716, (1992) · Zbl 0748.92012
[24] Gao, L. Q.; Hethcote, H. W., Disease transmission models with density-dependent demographics, J. Math. Biol., 30, 717-731, (1992) · Zbl 0774.92018
[25] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev., 42, 4, 599-653, (2000) · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[26] Bowong, S.; Tewa, J. J.; Kurths, J., Dynamics of the spread of tuberculosis in heterogeneous complex metapopulations, Int. J. Bifurcat. Chaos, 23, 1350128, (2013) · Zbl 1275.34066 · doi:10.1142/S0218127413501289
[27] Wang, J.; Liu, M.; Li, Y., Analysis of epidemic models with demographics in metapopulation networks, Phys. A, 392, 1621-1630, (2013) · doi:10.1016/j.physa.2012.12.007
[28] Tsoularis, A.; Wallace, J., Analysis of logistic growth models, Math. Biosci., 179, 1, 21-55, (2002) · Zbl 0993.92028 · doi:10.1016/S0025-5564(02)00096-2
[29] Newman, M. E. J.; Strogatz, S. H.; Watts, D. J., Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E, 64, 026118, (2001) · doi:10.1103/PhysRevE.64.026118
[30] Catanzaro, M.; Boguna, M.; Pastor-Satorras, R., Generation of uncorrelated random scale-free networks, Phys. Rev. E, 71, 027103, (2005) · doi:10.1103/PhysRevE.71.027103
[31] Anderson, J., A Secular equation for the eigenvalues of a diagonal matrix perturbation, Linear Algebra Appl., 246, 49-70, (1996) · Zbl 0861.15006 · doi:10.1016/0024-3795(94)00314-9
[32] Keeling, M. J.; Rohani, P., Modeling Infectious Disease in Humans and Animals, (2008), Princeton University · Zbl 1279.92038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.