×

An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems. (English) Zbl 1469.74108

Summary: By introducing the shape functions of virtual node polygonal (VP) elements into the standard extended finite element method (XFEM), a conforming elemental mesh can be created for the cracking process. Moreover, an adaptively refined meshing with the quadtree structure only at a growing crack tip is proposed without inserting hanging nodes into the transition region. A novel dynamic crack growth method termed as VP-XFEM is thus formulated in the framework of fracture mechanics. To verify the newly proposed VP-XFEM, both quasi-static and dynamic cracked problems are investigated in terms of computational accuracy, convergence, and efficiency. The research results show that the present VP-XFEM can achieve good agreement in stress intensity factor and crack growth path with the exact solutions or experiments. Furthermore, better accuracy, convergence, and efficiency of different models can be acquired, in contrast to standard XFEM and mesh-free methods. Therefore, VP-XFEM provides a suitable alternative to XFEM for engineering applications.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74R10 Brittle fracture
74H35 Singularities, blow-up, stress concentrations for dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Kikuchi, M.; Wada, Y.; Shintaku, Y., Fatigue crack growth simulation in heterogeneous material using \(\alpha \)-version FEM, Int J Fatigue, 58, 47-55, (2014)
[2] Yang, YT; Tang, XH; Zheng, H.; Liu, Q.; He, L., Three-dimensional fracture propagation with numerical manifold method, Eng Anal Bound Elem, 72, 65-77, (2016) · Zbl 1403.74091
[3] Pathak, H.; Singh, A.; Indra, VS, Fatigue crack growth simulations of 3-D problems using XFEM, Int J Mech Sci, 76, 112-131, (2013)
[4] Carter, BJ; Wawrzynek, PA; Ingraffea, AR, Automated 3-D crack growth simulation, Int J Numer Methods Eng, 47, 229-253, (2000) · Zbl 0988.74079
[5] Kim, J.; Simone, A.; Duarte, CA, Mesh refinement strategies without mapping of nonlinear solutions for the generalized and standard FEM analysis of 3D cohesive fracture, Int J Numer Methods Eng, 107, 235-258, (2017) · Zbl 07874354
[6] Wu, SC; Zhang, SQ; Xu, ZW, Thermal crack growth-based fatigue life prediction due to braking for a high-speed railway brake disc, Int J Fatigue, 87, 359-369, (2016)
[7] Kuna, M.; Springmann, M.; Mädler, K.; Hübner, P.; Pusch, G., Fracture mechanics based design of a railway wheel made of austempered ductile iron, Eng Fract Mech, 72, 241-253, (2005)
[8] Barani, OR; Khoei, AR, 3D modeling of cohesive crack growth in partially saturated porous media: a parametric study, Eng Fract Mech, 124-125, 272-286, (2014)
[9] Sukumar, N.; Prevost, J-H, Modeling quasi-static crack growth with the extended finite element method part I: computer implementation, Int J Solid Struct, 40, 7513-7537, (2003) · Zbl 1063.74102
[10] Belytschko, T.; Gracie, R.; Ventura, G., A review of extended generalized finite element methods for material modeling, Model Simul Mater Sci Eng, 17, 043001, (2009)
[11] Singh, IV; Mishra, BK; Bhattacharya, Patil RU, The numerical simulation of fatigue crack growth using extended finite element method, Int J Fract, 36, 109-119, (2012)
[12] Belytschko, T.; Lu, YY; Gu, L., Crack propagation by element-free Galerkin methods, Eng Fract Mech, 51, 295-315, (1995)
[13] Belytschko, T.; Krysl, P., The element free Galerkin method for dynamic propagation of arbitrary 3-D cracks, Int J Numer Methods Eng, 44, 767-800, (1999) · Zbl 0953.74078
[14] Atluri, SN; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput Mech, 22, 117-127, (1998) · Zbl 0932.76067
[15] Liu, KY; Long, SY; Li, GY, A simple and less-costly meshless local Petrov-Galerkin (MLPG) method for the dynamic fracture problem, Eng Anal Bound Elem, 30, 72-76, (2006) · Zbl 1195.74287
[16] Ching, HK; Batra, RC, Determination of crack tip fields in linear elastostatics by the meshless local Petrov-Galerkin (MLPG) method, Comput Model Eng Sci, 2, 273-290, (2001)
[17] Duflot, Marc; Nguyen-Dang, Hung, Fatigue crack growth analysis by an enriched meshless method, J Comput Appl Math, 168, 155-164, (2004) · Zbl 1107.74333
[18] Portela, A.; Aliabadi, M.; Rooke, D., The dual boundary element method: effective implementation for crack problem, Int J Numer Methods Eng, 33, 1269-1287, (1991) · Zbl 0825.73908
[19] Mi, Y.; Aliabadi, MH, Three-dimensional crack growth simulation using BEM, Comput Struct, 52, 871-878, (1994) · Zbl 0900.73900
[20] Yan, AM; Nguyen-Dang, H., Multiple-cracked fatigue crack growth by BEM, Comput Mech, 16, 273-280, (1995) · Zbl 0848.73077
[21] Fish, J.; Markolefas, S.; Guttal, R.; Nayak, P., On adaptive multilevel superposition of finite element meshes for linear elastostatics, Appl Numer Math, 14, 135-164, (1994) · Zbl 0801.73068
[22] Park, JW; Hwang, JW; Kim, YH, Efficient finite element analysis using mesh superposition technique, Finite Elem Anal Des, 39, 619-638, (2003)
[23] Vorobiov, O.; Tabatabaei, SA; Lomov, SV, Mesh superposition applied to meso-FE modelling of fibre-reinforced composites: cross-comparison of implementations, Int J Numer Methods Eng, 111, 1003-1024, (2017) · Zbl 07867084
[24] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int J Numer Methods Eng, 46, 131-150, (1999) · Zbl 0955.74066
[25] Sukumar, N.; Moës, N.; Moran, B.; Belytschko, T., Extended finite element method for three dimensional crack modelling, Int J Numer Methods Eng, 48, 1549-1570, (2000) · Zbl 0963.74067
[26] Moës, N.; Gravouil, A.; Belytschko, T., Non-planar 3D crack growth by the extended finite element and level sets—part I: mechanical model, Int J Numer Methods Eng, 53, 2549-2568, (2002) · Zbl 1169.74621
[27] Chin, EB; Lasserre, JB; Sukumar, N., Modeling crack discontinuities without element-partitioning in the extended finite element method, Int J Numer Methods Eng, 110, 1021-1048, (2017) · Zbl 07866619
[28] Jin, Y.; González-Estrada, OA; Pierard, O.; Bordas, SPA, Error-controlled adaptive extended finite element method for 3D linear elastic crack propagation, Comput Methods Appl Mech Eng, 318, 319-348, (2017) · Zbl 1439.74353
[29] Melenk, J.; Babuska, I., The partition of unity finite element method: basic theory and applications, Comput Methods Appl Mech Eng, 139, 289-314, (1996) · Zbl 0881.65099
[30] Banerjee, S.; Sukumar, N., Exact integration scheme for plane wave-enriched partition of unity finite element method to solve the Helmholtz problem, Comput Methods Appl Mech Eng, 317, 619-648, (2017) · Zbl 1439.78016
[31] Strouboulis, T.; Babuška, I.; Copps, K., The generalized finite element method: an example of its implementation and illustration of its performance, Int J Numer Methods Eng, 47, 1401-1417, (2000) · Zbl 0955.65080
[32] Wu, QG; Chen, XD; Fan, ZC; Nie, DF, Experimental and numerical study on dynamic fracture behaviour of AISI 1045 steel for compressor crankshaft, Fatigue Fract Eng Mater Struct, 40, 245-253, (2017)
[33] Lewandowski, J.; Rozumek, D., Cracks growth in S355 steel under cyclic bending with fillet welded joint, Theor Appl Fract Mech, 86, 342-350, (2016)
[34] Branco, R.; Antunes, FV; Costa, JD, A review on 3D-FE adaptive remeshing techniques for crack growth modelling, Eng Fract Mech, 141, 170-195, (2015)
[35] Peng, X.; Atroshchenko, E.; Kerfriden, P.; Bordas, SPA, Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth, Comput Methods Appl Mech Eng, 316, 151-185, (2017) · Zbl 1439.74370
[36] Shen, YX; Lew, A., Stability and convergence proofs for a discontinuous-Galerkin-based extended finite element method for fracture mechanics, Comput Methods Appl Mech Eng, 199, 2360-2382, (2010) · Zbl 1231.74440
[37] Malekan, M.; Barros, FB, Well-conditioning global-local analysis using stable generalized extended finite element method for linear elastic fracture mechanics, Comput Mech, 58, 819-831, (2016) · Zbl 1398.74367
[38] Nistor, I.; Pantalé, O.; Caperaa, S., Numerical implementation of the extended finite element method for dynamic crack analysis, Adv Eng Softw, 39, 573-587, (2008)
[39] González-Albuixech, VF; Giner, E.; Tarancón, JE; Fuenmayor, FJ; Gravouil, A., Convergence of domain integrals for stress intensity factor extraction in 2-D curved cracks problems with the extended finite element method, Int J Numer Methods Eng, 94, 740-757, (2013) · Zbl 1352.74280
[40] Lang, C.; Makhija, D.; Doostan, A.; Maute, K., A simple and efficient preconditioning scheme for heaviside enriched XFEM, Comput Mech, 54, 1357-1374, (2014) · Zbl 1311.74124
[41] Byfut, A.; Schroder, A., hp-adaptive extended finite element method, Int J Numer Methods Eng, 89, 1392-1418, (2012) · Zbl 1242.74099
[42] Gordeliy, E.; Peirce, A., Enrichment strategies and convergence properties of the XFEM for hydraulic fracture problems, Comput Methods Appl Mech Eng, 283, 474-502, (2015) · Zbl 1423.74884
[43] Asadpoure, A.; Mohammadi, S., Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method, Int J Numer Methods Eng, 69, 2150-2172, (2007) · Zbl 1194.74358
[44] Gupta, V.; Armando, Duarte C., On the enrichment zone size for optimal convergence rate of the generalized extended finite element method, Comput Math Appl, 72, 481-493, (2016) · Zbl 1359.65253
[45] Kumar, S.; Singh, IV; Mishra, BK; Rabczuk, T., Modeling and simulation of kinked cracks by virtual node XFEM, Comput Methods Appl Mech Eng, 283, 1425-1466, (2015) · Zbl 1423.74834
[46] Tang, XH; Wu, SC; Zheng, C.; Zhang, JH, A novel virtual node method for polygonal elements, Appl Math Mech Engl Ed, 30, 1233-1246, (2009) · Zbl 1177.74371
[47] Perumal L (2016) A novel virtual node hexahedral element with exact integration and octree meshing. Math Probl Eng, Article ID 3261391 · Zbl 1400.65058
[48] Wu, SC; Peng, X.; Zhang, WH; Stephane, SPA, The virtual node polygonal element method for nonlinear thermal analysis with application to hybrid laser welding, Int J Heat Mass Transf, 67, 1247-1254, (2013)
[49] Fries, TP; Belytschko, T., The extended generalized finite element method: an overview of the method and its applications, Int J Numer Methods Eng, 84, 253-304, (2010) · Zbl 1202.74169
[50] Zheng, C.; Wu, SC; Tang, XH; Zhang, JH, A novel twice-interpolation finite element method for solid mechanics problems, Acta Mech Sin, 26, 265-278, (2010) · Zbl 1269.74205
[51] Giner, E.; Sukumar, N.; Tarancón, JE; Fuenmayor, FJ, An ABAQUS implementation of the extended finite element method, Eng Fract Mech, 76, 347-368, (2009)
[52] Shen, YX; Lew, A., An optimally convergent discontinuous Galerkin-based extended finite element method for fracture mechanics, Int J Numer Methods Eng, 82, 716-755, (2010) · Zbl 1188.74070
[53] Lins, RM; Ferreira, MDC; Proenca, SPB; Duarte, CA, An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized extended finite element method, Comput Mech, 56, 947-965, (2015) · Zbl 1336.74067
[54] Samet, H., The quadtree and related hierarchical data structures, ACM Comput Surv, 16, 187-260, (1984)
[55] Gegrain, G.; Allais, R.; Cartraud, P., On the use of the extended finite element method with quadtree/octree meshes, Int J Numer Methods Eng, 86, 717-743, (2011) · Zbl 1235.74296
[56] Tabarraei, A.; Sukumar, N., Extended finite element method on polygonal and quadtree meshes, Comput Methods Appl Mech Eng, 197, 425-438, (2008) · Zbl 1169.74634
[57] Rivara, MC, Local modification of meshes for adaptive and/or multigrid finite-element methods, J Comput Appl Math, 36, 79-89, (1991) · Zbl 0733.65075
[58] Wang, Z.; Yu, TT; Bui, TQ; Trinh, NA; Luong, NTH; Duc, ND; Doan, DH, Numerical modeling of 3-D inclusions and voids by a novel adaptive XFEM, Adv Eng Softw, 102, 105-122, (2016)
[59] Tian, R.; Wen, LF, Improved XFEM—an extra-DOF free, well-conditioning, and interpolating XFEM, Comput Methods Appl Mech Eng, 285, 639-658, (2015) · Zbl 1423.74926
[60] Fries, TP; Byfut, A.; Alizada, A.; Cheng, KW; Schröder, A., Hanging nodes and XFEM, Int J Numer Methods Eng, 86, 404-430, (2011) · Zbl 1216.74020
[61] Wu, SC; Zhang, SQ; Xu, ZW; Kang, GZ; Cai, LX, Cyclic plastic strain based damage tolerance for railway axles in China, Int J Fatigue, 93, 64-70, (2016)
[62] Wu, SC; Xu, ZW; Yu, C.; Kafka, OL; Liu, WK, A physically short fatigue crack growth approach based on low cycle fatigue properties, Int J Fatigue, 103, 185-195, (2017)
[63] Wu SC, Liu YX, Li CH, Kang GZ, Liang SL, Zi ZW (2017) On the fatigue performance and residual life of intercity railway axles with inside axle boxes. Eng Fract Mech, Under Review
[64] Tada H, Paris PC, Irwin R (1973) The stress analysis of cracks (handbook). Del Research Corporation, Hellertown
[65] Liu, P.; Yu, TT; Bui, TQ; Zhang, CZ; Xu, YP; Lim, CW, Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method, Int J Solid Struct, 51, 2167-2182, (2014)
[66] González-Estrada, OA; Ródenas, JJ; Bordas, SPA; Nadal, E.; Kerfriden, P.; Fuenmayor, FJ, Locally equilibrated stress recovery for goal oriented error estimation in the extended finite element method, Comput Struct, 152, 1-10, (2015)
[67] Ma, S.; Zhang, XB; Recho, N.; Li, J., The mixed-mode investigation of the fatigue crack in CTS metallic specimen, Int J Fatigue, 28, 1780-1790, (2006)
[68] Daux, C.; Moës, N.; Dolbow, J.; Sukumar, N.; Belytschko, T., Arbitrary branched and intersecting cracks with the extended finite element method, Int J Numer Methods Eng, 48, 1741-1760, (2000) · Zbl 0989.74066
[69] Goli, E.; Bayesteh, H.; Mohammadi, S., Mixed mode fracture analysis of adiabatic cracks in homogeneous and non-homogeneous materials in the framework of partition of unity and the path-independent interaction integral, Eng Fract Mech, 131, 100-127, (2014)
[70] Chen, FHK; Shield, RT, Conservation laws in elasticity of the J-integral type, J Appl Math Phys (ZAMP), 28, 1-22, (1977) · Zbl 0367.73024
[71] Yau, JF; Wang, SS; Corten, HT, A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity, J Appl Mech, 47, 335-341, (1980) · Zbl 0463.73103
[72] Paris, P.; Erdogan, F., A critical analysis of crack propagation laws, Trans ASME J Basic Eng, 85, 528-533, (1963)
[73] Sun, H.; Waisman, H.; Betti, R., Nondestructive identification of multiple flaws using XFEM and a topologically adapting artificial bee colony algorithm, Int J Numer Methods Eng, 86, 404-430, (2011) · Zbl 1352.74439
[74] Minnebo, H., Three-dimensional integration strategies of singular functions introduced by the XFEM in the LEFM, Int J Numer Methods Eng, 86, 404-430, (2011) · Zbl 1352.74294
[75] Liu, GR; Nguyen-Xuan, H.; Nguyen-Thoi, T., A theoretical study on the smoothed FEM (S-FEM) models properties, accuracy and convergence rates, Int J Numer Methods Eng, 84, 1222-1256, (2010) · Zbl 1202.74180
[76] Zheng, C.; Wu, SC; Tang, XH; Zhang, JH, A meshfree poly-cell Galerkin (MPG) approach for problems of elasticity and fracture, Comput Model Eng Sci, 38, 149-178, (2008)
[77] Richard, HA; Fulland, M.; Sander, M., Theoretical crack path prediction, Fatigue Fract Eng Mater Struct, 28, 3-12, (2005)
[78] Xiao, QZ; Karihaloo, BL, Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery, Int J Numer Methods Eng, 66, 1378-1410, (2006) · Zbl 1122.74529
[79] Wen, LF; Tian, R., Improved XFEM: accurate and robust dynamic crack growth simulation, Comput Methods Appl Mech Eng, 308, 256-285, (2016) · Zbl 1439.74475
[80] Bouchard, PO; Bay, F.; Chastel, Y.; Tovena, I., Crack propagation modelling using an advanced remeshing technique, Comput Methods Appl Mech Eng, 189, 723-742, (2000) · Zbl 0993.74060
[81] Wang, H.; Liu, ZL; Xu, DD; Zeng, QL; Zhuang, Z., Extended finite element method analysis for shielding and amplification effect of a main crack interacted with a group of nearby parallel microcracks, Int J Damage Mech, 25, 4-25, (2016)
[82] O’Hara, P.; Duarte, CA; Eason, T., A two-scale generalized finite element method for interaction and coalescence of multiple crack surfaces, Eng Fract Mech, 163, 274-302, (2016)
[83] Xu, DD; Liu, ZL; Liu, XM; Zeng, QL; Zhuang, Z., Modeling of dynamic crack branching by enhanced extended finite element method, Comput Mech, 54, 489-502, (2014) · Zbl 1398.74422
[84] Wang, Z.; Yu, TT; Bui, TQ; Tanaka, S.; Zhang, CZ; Hirose, S.; Curiel-Sosa, J., 3-D local mesh refinement XFEM with variable-node hexahedron elements for extraction of stress intensity factors of straight and curved planar cracks, Comput Methods Appl Mech Eng, 313, 375-405, (2017) · Zbl 1439.74374
[85] Madia, M.; Beretta, S.; Zerbst, U., An investigation on the influence of rotary bending and press fitting on stress intensity factors and fatigue crack growth in railway axles, Eng Fract Mech, 75, 1906-1920, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.