×

Inverse problems associated with subsequence sums in \(C_p \oplus C_p\). (English) Zbl 1461.11134

Summary: Let \(G\) be a finite abelian group and \(S\) be a sequence with elements of \(G\). We say that \(S\) is a regular sequence over \(G\) if \(\mid S_H \mid \leqslant \mid H \mid - 1\) holds for every proper subgroup \(H\) of \(G\), where \(S_H\) denotes the subsequence of \(S\) consisting of all terms of \(S\) contained in \(H\). We say that \(S\) is a zero-sum free sequence over \(G\) if \(0 \not\in \Sigma (S)\), where \(\Sigma (S) \subset G\) denotes the set of group elements which can be expressed as a sum of a nonempty subsequence of \(S\). In this paper, we study the inverse problems associated with \(\Omega (S)\) when \(S\) is a regular sequence or a zero-sum free sequence over \(G = C_p \oplus C_p\), where \(p\) is a prime.

MSC:

11P70 Inverse problems of additive number theory, including sumsets
11B13 Additive bases, including sumsets
Full Text: DOI

References:

[1] Bollobás, B.; Leader, I., The number of k-sums modulo k, J Number Theory, 78, 27-35 (1999) · Zbl 0929.11008 · doi:10.1006/jnth.1999.2405
[2] Eggleton, R. B.; Erdős, P., Two combinatorial problems in group theory, Acta Arith, 21, 111-116 (1972) · Zbl 0248.20068 · doi:10.4064/aa-21-1-111-116
[3] Gao, W.; Hamidoune, Y., On additive bases, Acta Arith, 88, 233-237 (1999) · Zbl 0935.11004 · doi:10.4064/aa-88-3-233-237
[4] Gao, W.; Han, D.; Qu, Y.; Qian, G.; Zhang, H., On additive bases II, Acta Arith, 168, 247-267 (2015) · Zbl 1330.11064 · doi:10.4064/aa168-3-3
[5] Gao, W.; Geroldinger, A., On zero-sum sequences in ℤ/nℤ⊕ℤ/nℤ, Integers, 3, A08 (2003) · Zbl 1078.11010
[6] Gao, W.; Geroldinger, A.; Grynkiewicz, D., Inverse zero-sum problems III, Acta Arith, 141, 103-152 (2010) · Zbl 1213.11178 · doi:10.4064/aa141-2-1
[7] Gao, W.; Li, Y.; Peng, J.; Sun, F., On subsequence sums of a zero-sum free sequence II, Electron J Combin, 15, R117 (2008) · Zbl 1207.11025 · doi:10.37236/841
[8] Gao, W.; Qu, Y.; Zhang, H., On additive bases III, Acta Arith, 193, 3, 293-308 (2020) · Zbl 1461.11025 · doi:10.4064/aa181106-22-4
[9] Geroldinger, A.; Grynkiewicz, D. J., The large Davenport constant I: Groups with a cyclic, index 2 subgroup, J Pure Appl Algebra, 217, 863-885 (2013) · Zbl 1276.20027 · doi:10.1016/j.jpaa.2012.09.004
[10] Geroldinger, A.; Halter-Koch, F., Non-Unique Factorizations, Algebraic, Combinatorial and Analytic Theory (2006), Boca Raton: Chapman & Hall/CRC, Boca Raton · Zbl 1117.13004
[11] Guan, H.; Zeng, X.; Yuan, P., Description of invariant F(5) of a zero-sum free sequence, Acta Sci Natur Univ Sunyatseni, 49, 1-4 (2010) · Zbl 1240.11045
[12] Martin, G.; Peilloux, A.; Wong, E. B., Lower bounds for sumsets of multisets in \(Z_p^2\), Integers, 13, A72 (2013) · Zbl 1295.11011
[13] Matomäki, K., On sumsets of multisets in \(Z_p^m\), Electron J Combin, 20, 3, P30 (2013) · Zbl 1296.11008 · doi:10.37236/3269
[14] Olson, J. E., A combinatorial problem on finite abelian groups I, J Number Theory, 1, 8-10 (1969) · Zbl 0169.02003 · doi:10.1016/0022-314X(69)90021-3
[15] Olson, J. E., A combinatorial problem on finite abelian groups II, J Number Theory, 2, 195-199 (1969) · Zbl 0167.28004 · doi:10.1016/0022-314X(69)90037-7
[16] Olson, J. E.; White, E. T.; Zassenhaus, H., Sums from a sequence of group elements, Number Theory and Algebra, 215-222 (1977), New York: Academic Press, New York · Zbl 0368.05009
[17] Peng, C., Addition theorems in elementary abelian groups I, J Number Theory, 27, 46-57 (1987) · Zbl 0624.10046 · doi:10.1016/0022-314X(87)90050-3
[18] Peng, J.; Hui, W., On the structure of zero-sum free set with minimum subset sums in abelian groups, Ars Combin, 146, 63-74 (2019) · Zbl 1463.11083
[19] Peng, J.; Li, Y.; Liu, C.; Huang, M., On subsequence sums of a zero-sum free sequence over finite abelian groups, J Number Theory, 217, 193-217 (2020) · Zbl 1469.11039 · doi:10.1016/j.jnt.2020.04.024
[20] Peng J, Li Y, Liu C, Huang M. On the inverse problems associated with subsequence sums of zero-sum free sequences over finite abelian groups. Colloq Math (to appear) · Zbl 1460.11118
[21] Pixton, A., Sequences with small subsums sets, J Number Theory, 129, 806-817 (2009) · Zbl 1234.11010 · doi:10.1016/j.jnt.2008.12.004
[22] Qu, Y.; Han, D., An inverse theorem for additive bases, Int J Number Theory, 12, 1509-1518 (2016) · Zbl 1350.11010 · doi:10.1142/S1793042116500937
[23] Qu, Y.; Han, D., Additive bases of C_p ⊕C_pn, Int J Number Theory, 13, 2453-2459 (2017) · Zbl 1392.11008 · doi:10.1142/S1793042117501342
[24] Qu, Y.; Wang, G.; Wang, Q.; Guo, D., Extremal incomplete sets in finite abelian groups, Ars Combin, 116, 457-475 (2014) · Zbl 1340.20047
[25] Reiher C. A proof of the theorem according to which every prime number possesses Property B. Ph D Thesis. Rostock, 2010
[26] Sun, F., On subsequence sums of a zero-sum free sequence, Electron J Combin, 14, R52 (2007) · Zbl 1206.11022 · doi:10.37236/970
[27] Sun F, Peng J, Li Y. A note on the inverse problems associated with subsequence sums. J Combin Math Combin Comput (to appear) · Zbl 1483.11040
[28] Yuan, P., Subsequence sums of a zero-sumfree sequence, European J Combin, 30, 439-446 (2009) · Zbl 1170.20033 · doi:10.1016/j.ejc.2008.04.008
[29] Yuan, P., Subsequence sums of zero-sum-free sequences, Electron J Combin, 16, R97 (2009) · Zbl 1248.11021 · doi:10.37236/186
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.